Contents

List of Illustrations xiii
Preface xv
Acknowledgements xvii
Publisher’s Acknowledgements xviii
List of Abbreviations and Acronyms xx

1. **Introduction**
 1.1 Preview of Chapter
 1.2 The Dual Meaning of the Term “Expertise”
 1.3 Definitions of Expertise
 1.4 Why Study Expertise?
 1.5 Preview of Book
 1.6 Chapter Summary
 1.7 Further Reading

2. **Perception and Categorisation**
 2.1 Preview of Chapter
 2.2 De Groot’s Seminal Research
 2.3 Medical Expertise
 2.4 Holistic Perception and Anticipatory Schemata
 2.5 Perception in Sport
 2.6 Perception in Music
 2.6.1 Basic Skill Differences in Perception
 2.6.2 Absolute Pitch
 2.6.3 Laypeople’s Implicit Musical Expertise
 2.6.4 Sight-Reading
 2.7 Perceptual Learning, Perceptual Expertise and Categorisation
 2.8 Chapter Summary
 2.9 Further Reading

3. **Memory**
 3.1 Preview of Chapter
 3.2 Chase and Simon’s Research
 3.2.1 The Key Empirical Results
 3.2.2 Chunking Theory
 3.3 Generalisability of Experts’ Superiority in Recall Tasks
 3.4 Is Knowledge Structured as Chunks?
 3.5 How Many Chunks Are Stored in LTM?
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 Does Randomisation Eliminate Experts’ Superiority?</td>
<td>37</td>
</tr>
<tr>
<td>3.7 Is STM Capacity Limited and Are LTM Encoding Times Slow?</td>
<td>39</td>
</tr>
<tr>
<td>3.8 The Intermediate Effect in Medicine</td>
<td>44</td>
</tr>
<tr>
<td>3.9 Memory in Sports</td>
<td>46</td>
</tr>
<tr>
<td>3.10 Memory in Music</td>
<td>47</td>
</tr>
<tr>
<td>3.11 Theoretical Accounts</td>
<td>48</td>
</tr>
<tr>
<td>3.11.1 Chase and Simon’s Chunking Theory</td>
<td>48</td>
</tr>
<tr>
<td>3.11.2 Skilled Memory Theory</td>
<td>49</td>
</tr>
<tr>
<td>3.11.3 Long-Term Working Memory</td>
<td>49</td>
</tr>
<tr>
<td>3.11.4 Revisions of Chunking Theory</td>
<td>51</td>
</tr>
<tr>
<td>3.11.5 Constraint Attunement Theory</td>
<td>58</td>
</tr>
<tr>
<td>3.12 Chapter Summary</td>
<td>60</td>
</tr>
<tr>
<td>3.13 Further Reading</td>
<td>60</td>
</tr>
<tr>
<td>4 Problem Solving</td>
<td>61</td>
</tr>
<tr>
<td>4.1 Preview of Chapter</td>
<td>61</td>
</tr>
<tr>
<td>4.2 De Groot’s Research</td>
<td>62</td>
</tr>
<tr>
<td>4.3 Phases of Problem Solving</td>
<td>63</td>
</tr>
<tr>
<td>4.4 Expertise Effects in Progressive Deepening</td>
<td>64</td>
</tr>
<tr>
<td>4.5 Macrostructure of Search</td>
<td>66</td>
</tr>
<tr>
<td>4.6 Directionality of Search</td>
<td>67</td>
</tr>
<tr>
<td>4.7 Planning</td>
<td>67</td>
</tr>
<tr>
<td>4.8 Evaluation</td>
<td>68</td>
</tr>
<tr>
<td>4.9 The Role of Pattern Recognition in Problem Solving</td>
<td>69</td>
</tr>
<tr>
<td>4.10 The Role of Perception in Problem Solving</td>
<td>70</td>
</tr>
<tr>
<td>4.11 The Role of Schemata and Conceptual Knowledge in Problem Solving</td>
<td>70</td>
</tr>
<tr>
<td>4.12 The Role of Representations</td>
<td>73</td>
</tr>
<tr>
<td>4.12.1 Physics</td>
<td>73</td>
</tr>
<tr>
<td>4.12.2 Economics</td>
<td>74</td>
</tr>
<tr>
<td>4.13 Automatisation and Rigidity of Thought</td>
<td>75</td>
</tr>
<tr>
<td>4.13.1 Automatisation</td>
<td>75</td>
</tr>
<tr>
<td>4.13.2 Rigidity of Thought</td>
<td>76</td>
</tr>
<tr>
<td>4.14 Theories of Problem Solving</td>
<td>78</td>
</tr>
<tr>
<td>4.14.1 The Selz-de Groot Framework</td>
<td>78</td>
</tr>
<tr>
<td>4.14.2 Newell and Simon’s Problem-Space Theory</td>
<td>78</td>
</tr>
<tr>
<td>4.14.3 Chunking Theory and Template Theory</td>
<td>79</td>
</tr>
<tr>
<td>4.14.4 Holding’s Theory</td>
<td>80</td>
</tr>
<tr>
<td>4.14.5 Computer Models of Human Search</td>
<td>80</td>
</tr>
<tr>
<td>4.15 Chapter Summary</td>
<td>84</td>
</tr>
<tr>
<td>4.16 Further Reading</td>
<td>84</td>
</tr>
<tr>
<td>5 Decision Making</td>
<td>85</td>
</tr>
<tr>
<td>5.1 Preview of Chapter</td>
<td>85</td>
</tr>
<tr>
<td>5.2 Rationality and Bounded Rationality</td>
<td>85</td>
</tr>
<tr>
<td>5.3 The Heuristics and Biases Approach</td>
<td>86</td>
</tr>
</tbody>
</table>
5.4 Biases in Experts 87
5.5 Fast and Frugal Heuristics 88
5.6 Naturalistic Decision Making 89
5.7 The SOS Effect 91
5.8 Shanteau’s Framework 92
5.9 Decision Making in Sports 93
5.9.1 Using Task-Specific Probabilities 93
5.9.2 Option Selection 94
5.10 Chapter Summary 95
5.11 Further Reading 96

6 Intuition, Insight and Creativity 97
6.1 Preview of Chapter 97
6.2 Expert Intuition 97
6.2.1 Simon’s Theory 98
6.2.2 Dreyfus and Dreyfus’s Theory 99
6.2.3 Template Theory of Intuition 100
6.2.4 Too Much of a Good Thing? 100
6.3 Insight 101
6.4 Creativity 103
6.4.1 Are Estimations of Creativity Reliable? 103
6.4.2 Tests of Creativity 105
6.4.3 Factors Supporting the Development of Creativity 106
6.4.4 Theories of Creativity 108
6.5 Chapter Summary 113
6.6 Further Reading 114

7 Talent, Individual Differences and Gender Differences 115
7.1 Preview of Chapter 115
7.2 Talent Approaches Based on Intelligence 115
7.2.1 A Brief Overview of Early Intelligence Research 115
7.2.2 Two Classic Studies on Intelligence and Talent 117
7.2.3 Gardner’s Approach 118
7.2.4 IQ as Predictor of Expert Performance 119
7.2.5 Components of Intelligence 120
7.2.6 Intelligence: Discussion 120
7.3 Talent Approaches Not Based on Intelligence 121
7.3.1 Talent in Chess 121
7.3.2 Talent in Music 123
7.3.3 Talent in Sports 124
7.4 Personality 127
7.4.1 Creativity 128
7.4.2 Other Domains of Expertise 129
7.5 Psychopathology 129
7.6 Gender Differences 131
7.6.1 General Explanations 132
7.6.2 Explanations Based on Intelligence 134
13 Philosophy

13.1 Preview of Chapter 217
13.2 Ancient Greek Philosophy 217
13.3 Knowing-How and Tacit Knowledge: Ryle and Polanyi 219
13.4 Disagreement between Experts 221
13.5 Identification of Experts 222
13.6 Dreyfus’s Critique of Expert Systems 224
13.7 Rationality and Expertise 225
13.8 Philosophy and Expertise: Applications 226
13.9 Chapter Summary 228
13.10 Further Reading 229

14 Artificial Intelligence and Expert Systems

14.1 Preview of Chapter 230
14.2 Knowledge Representation 230
14.3 Expert Systems 231
14.4 Knowledge Elicitation Techniques 233
14.5 Decline of Expert Systems Research 234
14.6 Contributions of Expert Systems Research 235
14.7 Chapter Summary 236
14.8 Further Reading 236

15 Putting It All Together

15.1 Preview of Chapter 237
15.2 Good and Bad News 237
15.3 Transversal Themes 238
 15.3.1 Definition and Identification 239
 15.3.2 Rationality 239
 15.3.3 Knowledge 241
 15.3.4 Search 241
 15.3.5 Generativity 242
 15.3.6 Diachronicity 243
 15.3.7 Nature vs. Nurture 243
 15.3.8 Environment and Society 243
15.4 Methods and Theories 244
15.5 Four Tensions (Almost) Resolved 245
15.6 Practical Implications 246
15.7 How to Become an Expert
 15.7.1 Performance-based Expertise 248
 15.7.2 Reputation-based Expertise 249
15.8 Conclusion: Toward an Integration of Research on Expertise? 249
15.9 Chapter Summary 251
15.10 Further Reading 251

References 252
Index 293
Chapter 1

Introduction

1.1 Preview of Chapter

We live in a complex environment, where new technological developments regularly challenge our wits. With the development of the Internet, the amount of information that is available has increased exponentially over the last decade. It is therefore essential that we improve our understanding of the way people learn to cope with these challenges. In the last century or so, a tremendous amount of information has been acquired regarding learning in psychology, neuroscience, education, sociology and other fields, with a substantial portion derived from research into expertise. The aim of this book is to review the most important results stemming from this line of research and to evaluate their implications for society. In particular, we will be interested in the educational methods that have benefited from expertise research and in the implications that this research has on how society can develop ways to help citizens cope with these new challenges.

A good way to start is to illustrate, with a few examples, what we mean by experts. A list of top-level experts would include Wolfgang Amadeus Mozart in music, Marie Curie in science, Magnus Carlsen in chess, Bill Gates in business and Jessica Ennis-Hill in sports. A list of more ordinary experts would include a physician, an engineer, a lawyer but also a baker, a florist and a nurse.

From the outset, we face a few central questions on the nature of expertise. The most obvious is: what is expertise? We will spend some time discussing some of the many definitions that have been proposed and evaluating the extent to which they are successful. This will lead to a working definition that we will use in most of this book. Another important question relates to the reasons why it is important to study expertise. We will see that there are both basic scientific reasons and more applied ones. However, before we address these questions, we need to clear up an important issue about the dual meaning of the word “expertise”.

1.2 The Dual Meaning of the Term “Expertise”

Whatever the detail of the definitions, which we will consider in the next section, one must recognise from the outset that the term “expertise” has
two basic meanings, which are not necessarily consistent with each other. For example, the *Oxford Talking Dictionary* (1998) defines expertise as “Expert opinion or knowledge; know-how, skill, or expertness in something”. The first part of the definition emphasises knowledge or even opinion – *knowing-that*. The second part emphasises skill – *knowing-how*, as indeed mentioned in the definition. This is a fundamental divide reflected in several of the fields we will consider in this book. On the one hand, sociology, law and – to some extent – philosophy are more interested in the first part of the definition (knowing-that). On the other hand, psychology, neuroscience and education essentially use the second part of the definition (knowing-how). Interestingly, some languages such as French accept only the first meaning of the term “expertise” in everyday language.

These two meanings raise the irksome question as to whether they are related, and indeed whether it makes sense to devote a book to expertise as a single concept. This book will argue that this is not only a meaningful endeavour but also an important one. Bringing together traditions of research that have focused on either meaning of the word will help integrate two bodies of knowledge that have essentially evolved independently. It also raises new and important questions that will spur new research and bring about new applications.

1.3 Definitions of Expertise

Having cleared up the question of the two basic meanings of “expertise”, we can consider some of the definitions of expertise that have been proposed in the literature. Note that not all definitions neatly fit with the two meanings we have just discussed.

Intuitively, the term “expertise” brings to mind individuals such as physicians, engineers, chess masters and lawyers. Most people would also consider that good examples of experts are offered by the pundits (such as academics, journalists or business consultants) who proffer their views about their area of expertise (and even sometimes well beyond) on TV/radio and in newspapers. But what about occupations such as bricklaying and cigar making, or abilities such as language and walking, which most people carry out fluently? Obviously, some activities are more likely to be labelled as “expertise” than others. Is this reasonable or is it just a reflection of the prejudices of our society?

In research papers, expertise is often defined using experience and the amount of time an individual has spent in a domain. Unfortunately, while the amount of dedicated practice predicts expertise fairly well (see Chapter 8), experience in itself is often a poor predictor of true expertise (Ericsson et al., 1993; Meehl, 1954; Richman et al., 1996). Everybody knows amateur tennis players or pianists who fall short of expert performance despite having practised their favourite activity for years. In fact, there is direct empirical evidence from research on clinical expertise (Meehl, 1954) and chess (Gobet et al., 2004)
indicating that the correlation between expertise level and the number of years spent in a field is weak.

Another reasonable approach is to use diplomas: PhDs, honorary titles and certificates from official professional associations. There are at least four weaknesses with this approach. First, diplomas are often based not only on an objective measure of performance but also on sociocultural criteria. Second, diplomas often do not test the skills that will be used later, but rather test declarative knowledge. This is the case, for example, in medical schools and most fields in universities (psychology is a case in point). Thus, future medical doctors are tested on their knowledge of anatomy, biochemistry and pathology, and not on their ability to diagnose and treat patients. Third, unless detailed grades are supplied, diplomas do not provide much information about the skill level obtained. Fourth, some individuals can be experts without formal qualifications. A striking example is provided by Epstein (1996), who showed that some AIDS activists had acquired considerable knowledge about microbiology and statistics, which, added to their knowledge of AIDS culture, allowed them to make substantial contributions to research. As Gallo, who co-discovered the human immunodeficiency virus (HIV) and who was originally lukewarm to AIDS activists’ work, put it: “It’s frightening sometimes how much they know and how smart some of them are” (Epstein, 1996, p. 338).

Some fields offer more reliable measures of expertise, measures that are also ecological, in the sense that they are part of the culture of the domain. Researchers of business expertise can use the wealth accumulated by different individuals; students of expertise in science can use the number of citations that scientists have accrued during their career; and researchers of writing expertise can use the number of books an author has sold. While having the advantage of being quantitative, these measures have shortcomings as well. In particular, they can be sensitive to factors unrelated to expertise, such as market fluctuations in business, popularity of a specific school of thought in science and fashion in literature.

In an ideal world – at least for scientific research – experts would be rank-ordered as a function of their level of expertise, or even better, they would have their expertise quantified. When absolute measures are involved (e.g. time to run 100 metres or the amount of weight that an athlete can lift), there is no debate, barring accusations of cheating. Rank ordering is used in sports such as football, where the International Federation of Association Football (FIFA) publishes a monthly ranking of national teams, using a rather byzantine formula. Tennis uses the ranking of the Association of Tennis Professionals (ATP): the sum of the best 18 results from the immediate past 52 weeks. From the point of view of expertise research, the ATP rating has two weaknesses. First, it measures skill only over the last year, and second, it only takes points won in entire tournaments into account and ignores the strength of the opponents as well as the outcomes of specific matches.

The best available system so far is the Elo rating (Elo, 1978), developed for measuring chess skill but now also used in other domains such as Scrabble and
table tennis. The Elo rating takes into account both the outcome of a game (win, loss or draw) and the skill level of the opponent. It can be used after each game or match, producing a finely graded and up-to-date measure of skill. It also has the advantage that it is based on a sound mathematical model. Having such a quantitative measure is a real bonus, and this in fact partly explains why a considerable amount of research has been carried out on chess expertise. While researchers in most other domains of expertise have to satisfy themselves with coarse comparisons between novices, intermediates and experts, chess researchers can differentiate between a grandmaster with 2,620 Elo points and another with 2,680 Elo points, and even compute the expected outcome of a game between those two players.

Some researchers emphasise that expertise is something that can only be acquired with effort and intentionally, with a clear goal in mind (Bereiter & Scardamalia, 1993). This seems an unnecessary requirement. How expertise is acquired is of course important, but it does not seem wise to include this in a definition. Similarly, whether somebody is talented or not in a specific domain should not be part of the definition of expertise, not least because there is considerable disagreement about this question. We shall take up these issues in Chapters 7 and 8.

In a similar vein, it has been proposed that the hallmark of experts is that they display fluid behaviour, requiring few conscious decisions (Dreyfus & Dreyfus, 1988; Fitts, 1964). We shall see that this description captures expertise in some but not all situations. Moreover, it should also be pointed out that almost the opposite definition of expertise has sometimes been proposed. Bereiter and Scardamalia (1993, p.11) argue that “the expert addresses problems whereas the experienced nonexpert carries out practiced routines”. A similar view is shared by Ericsson et al. (1993), who argue that just performing routine actions hinders the development of expertise, and that experts must deliberatively practice selected components of their skill. We will discuss this idea in considerable detail in Chapter 8 when dealing with deliberate practice.

The importance of knowledge has often been emphasised, in particular when human expertise is compared to the expertise (or the lack thereof) of computers. For example, it has been proposed that expertise is made possible by the acquisition of a large number of domain-specific patterns. While this is true in many domains (see Chapters 2 and 3), it seems prudent to not include putative mechanisms in the definition of expertise, in part because the nature of these mechanisms is still the topic of vigorous debate. In any case, investigating expertise will require reflecting on, and questioning, long-held views about the status of knowledge in cognition. An important question will be the link between knowledge and real-time cognitive processing. In intelligence research, these two forms of cognition are called crystallised and fluid intelligence, respectively (Cattell, 1971).

Based on the seminal work of de Groot (1965), who asked chess players of various skill levels to find the best move in a given chess position, Ericsson has repeatedly emphasised (e.g. Ericsson, 1996a; Ericsson & Smith, 1991a)
that expert performance should be replicable in the laboratory, when tasks representative of the domain are used. For example, when studied in the laboratory and compared to non-experts, chess experts should find better moves, physicists should provide better solutions to physics problems and medical doctors should provide better diagnoses. As we shall see in this book, this is in fact what has been found in the three examples just given, and indeed in most (although by no means all) domains of expertise. Thus, Ericsson’s requirement seems a valid one, at least with domains where it is feasible to set up laboratory tasks that are ecologically valid. But this is not always possible. A counter-example is expertise in developing novel and ground-breaking scientific theories in physics; by definition, such events are rare, and thus unlikely to be captured in the laboratory.

Finally, we would be remiss to not mention some definitions where the social aspects of expertise play a central role. These definitions emphasise that “expertise” is a label that society or other groups give to individuals, sometimes irrespectively of the real competences of these individuals. Support for this view comes from the fact that selection criteria differ from one domain to the next, and indeed even differ within a domain (Sternberg, 1997). Labels can be official, such as university and professional titles, or informal, such as the label of the “local technology wizard”, but this is immaterial when it comes to societal recognition. Stein (1997) argues that the term “expertise” can only be used within a specific context. According to him, it is incorrect to say that expertise resides solely in the expert: while individual knowledge and skills are obviously important, these gain their meaning only within the context provided by the social system of which the expert is a part. We will take up these issues in Chapters 11 and 12 when dealing with the social aspects of expertise and the sociology of professions.

In most of this book, we will define an expert as somebody who obtains results that are vastly superior to those obtained by the majority of the population. This definition has the advantage that it can be applied recursively and that we can define a super-expert: somebody whose performance is vastly superior to the majority of experts (Gobet, 2011).1 This definition also has the advantage of providing a means to deal with domains where most individuals have a high level of natural ability (e.g. language, walking). It is still possible to identify an expert in language (e.g. somebody who possesses a large vocabulary) and an expert in walking (e.g. somebody who has won an Olympic medal in the 20 km race walking event). Indeed, even with an ability as basic as breathing, it could be argued that practitioners of hatha yoga are experts, in that they have mastered breathing techniques unknown to most people. Finally, this definition can be applied to the two meanings of “expertise” we have highlighted earlier. The application is trivial with the know-how meaning: we can simply observe whether an expert does better than a non-expert. Does Lionel Messi dribble more successfully than a third-division player, or does an

1A super-expert might correspond to what is sometimes called a “genius”.
experienced surgeon operate better than a newcomer? The application is more delicate, but still possible, with the know-that meaning. The difficulty is not in testing the amount of knowledge – simple questionnaires can do this – but in the fact that knowledge itself can be of variable quality. For example, we would doubt the scientific quality of the knowledge used by an astrologer, but not by a civil engineer. This issue will be dealt with at great length in Chapter 12.

1.4 Why Study Expertise?

The study of expertise is important for society in several ways. First, it sheds important light on learning and the acquisition of knowledge, which can be used to develop better methods of instruction and training. Given the pace at which technology advances in our society, this is a significant contribution. For example, research on physics and mathematics expertise, together with other studies, has led to the development of artificial tutoring systems in mathematics that perform better than human teachers (see Chapter 8).

Second, research on expertise can lead to better ways of coaching experts. The clearest illustration of this comes perhaps from sport and music. In athletics, world records are improved every year due to better training techniques, and the difference between current and previous achievements is sometimes stunning. The winners of Olympic medals in the marathon one century ago recorded times similar to today’s amateur runners. In swimming, the seven world records that earned Mark Spitz as many gold medals at the Munich Olympic Games in 1972 would not have been sufficient for qualification for the semi-finals in the 2008 Beijing Olympic Games.

Third, research on human expertise can inform the development of artificial expert systems performing at high or even human-like levels, as we shall see in Chapter 14. Expert systems are much cheaper, do not tire and do not move to other jobs – considerable advantages from the point of view of industry. Thus, expert systems can make valuable contributions to the economy.

With respect to cognitive psychology, research on expertise has shed important light on human cognition, and several general cognitive mechanisms have first been identified in expertise research. These include the role of pattern recognition in decision making and problem solving, progressive deepening and selective search. (We will discuss these mechanisms in detail in Chapter 4.) Thus, just as neuropsychology illuminates human cognition by studying a “special” population characterised by brain damage, expertise research provides critical information on cognition by focusing on individuals who go beyond the limits that mar most of us. In both cases, looking at an atypical population offers a unique window on typical cognition.

Positive psychology, which is now a very influential approach in psychology, was created from the observation that most psychology devoted all its energy to negative aspects of human psychology, such as pathology, while ignoring its more positive aspects (Linley et al., 2006; Seligman & Csikszentmihalyi,
Introduction

2000). By contrast, positive psychology focuses on hope, optimism and other human virtues. It might be worth emphasising that research on expertise, which focuses on humans’ creativity and their potential to achieve extraordinary performances, had unequivocally anticipated at least some of the claims of positive psychology.

1.5 Preview of Book

The following chapters deal with the psychology of expertise. Chapter 2 focuses on perception and categorisation. It shows that perception lies at the heart of expertise: experts literally “see” things differently compared to novices, enabling them to categorise situations and problems better. Chapter 3 argues that this superior perception is due to the vast amount of knowledge that has been stored in long-term memory (LTM) during the years of practice necessary to reach expertise. Numerous theories have been developed to explain expert memory, and this chapter reviews the main candidates.

In Chapters 4 and 5, we shall see how these differences in perception and knowledge affect problem solving and decision making. They also affect experts’ intuition, insight and creativity, topics of Chapter 6. In all cases, non-cognitive factors are involved as well. These include personality and intelligence, which are covered in Chapter 7. This chapter examines different approaches, mostly from differential psychology, that defend the role of talent, and it also addresses the issue of gender differences. In domains such as mathematics, science and chess, men vastly outperform women; is the origin of these differences social or biological? Finally, the chapter examines the hypothesis that creativity might benefit from psychopathologies such as manic depression and schizophrenia. When discussing these issues, these chapters provide an overview of the key empirical results, the methods used to obtain these results, and the main theories developed to explain them.

Chapter 8 covers the links between expertise, learning and education. It is concerned with four broad issues. First, it addresses the implications of theories based on talent for education. Second, it discusses the role of practice in acquiring expertise, and what theories focusing on practice tell us about the training of experts. If the theories presented in Chapters 2, 3 and 4 are correct, then it should be possible to isolate the components of knowledge that experts must acquire and design instruction and training methods that optimise their transmission to budding experts. Suitable practice schedules can then be designed and optimal feedback can be provided. In the extreme case, aspects of coaching could be automated with intelligent tutoring systems. Great attention will be devoted to the deliberate practice framework, which has been very influential in recent years. Proponents of deliberate practice argue that there is no empirical evidence for the role of talent in the development of expertise, and this claim will be discussed. The third issue addressed in this chapter is that of transfer. Do skills acquired in one domain transfer to others?
How do some experts appear to move to a different domain of expertise seamlessly, for example from being a biochemist to university vice-chancellor, while others fail to make such transitions? Finally, the chapter addresses the question of expert learners and expert teachers. Are some individuals just better than the majority at acquiring new information? Are some individuals particularly efficient at transmitting information to others? If so, what does this tell us about education in general?

Chapter 9 covers expertise across the life span. How does expertise develop with children? What are the respective roles of knowledge (including strategies) and biological maturation? What light do savants throw on expertise in general? Is the talent of gifted children limited to a single domain? At the other side of the life span, we will consider how ageing affects expertise, and whether expertise acts as a moderating variable in the ageing process. We will also consider how the careers of creative people evolve across time.

Chapter 10 addresses the links between expertise, biology and neuroscience. It discusses the influential theory proposed by Geschwind and Galaburda (1987), which ties together data from psychopathology (e.g. dyslexia and autism), developmental neuroscience and expertise in a large variety of domains including mathematics, visual arts and music. Recently, important discoveries have been made with the advent of novel brain imaging techniques (e.g. functional magnetic resonance imaging) as well as new developments with older techniques (e.g. electro-encephalography), and this chapter reviews the most important of them. These cover a large variety of expertise domains, most notably sports and music. The key notion of brain plasticity, which impinges on the interpretation of some of these data, is also examined. Finally, a better understanding of the biological mechanisms underpinning expertise raises the possibility of creating new drugs that will speed up the development of experts and enhance their performance. How far are we from this Brave New World?

Chapters 11 and 12 deal with expertise and its place in society. In some domains, the distinction between experts and non-experts is obvious. If one doubts that Maryam Mirzakhani, who in 2014 was the first woman, Muslim and Iranian to win the prestigious Fields Medal, is an expert in mathematics and more specifically the symmetry of curved surfaces, one can always try to identify errors in her proofs. However, as we have just seen, there are other domains – perhaps most domains in “real life” – where the definition of expertise is controversial. More generally, there is the issue that expertise criteria vary from one domain to the next, and that criteria are sometimes used inconsistently within the same domain of expertise. This particularly applies to the professions, which are the main kind of institutionalised expertise in industrialised countries (most notably lawyers and the medical profession).

How then are experts selected and labelled by society? Are official titles (such as those awarded by universities) always necessary? To what extent do specific contexts create new types of expertise and new experts? Is expertise just the product of an arbitrary selection from a particular group? What are the specific
practices that enable social and cultural authority? Do experts in Scientology and astrology have the same status as experts in neuroscience and astronomy? What is the role of scientific knowledge in validating experts? Are today’s experts tomorrow’s non-experts? These considerations are answered by results from sociology research.

Another key topic of these chapters concerns the power of experts, at least in industrialised societies. Directly or indirectly, experts played a role in the recent global financial crisis either by condoning financial practices that were – with the benefit of hindsight – too risky or failing to predict the consequences of these practices on the dynamics of markets. Similarly, experts have a considerable impact on political decisions (consider, for example, global warming or the 2009 swine flu pandemic), even though the science itself is a matter of dispute amongst experts. This raises complex questions about experts’ legitimacy and accountability.

These chapters also address the extent to which it is possible to communicate expert knowledge – an issue that is crucial in legal settings, for example with expert testimony. Authors such as Luhmann (1995) have argued that experts essentially cannot communicate knowledge outside their constituency. This is because social communication systems each make sense of their environment using their own code. Others, such as Mieg (2001), have been more sanguine about experts’ ability to do so. Finally, the chapters address the question as to how the mass media and more recently the Internet affect the way expert knowledge is communicated.

The final theme addressed in these chapters is the issue of the legal status of the expert. There are vast differences in the way experts are defined and selected in different legal systems. These chapters compare and contrast practices in the common law jurisdictions of Anglo–American courts with the civil law jurisdictions within continental Europe. Key questions include an analysis of current systems of appointment of expert witnesses and, more generally, of the designation of someone as an “expert”. Another issue is that the legal coding of information will be different to that used, for example, in engineering. As a consequence, expert opinion will have a different meaning and significance within the legal system to those within the domain from which the expertise originated, often creating serious misunderstandings and distortions.

The discussion of the philosophy of expertise in Chapter 13 will allow us to revisit some of the central questions of this book: the question of rationality, the nature of knowledge acquired by experts (knowing-that and/or knowing-how), and the nature of scientific knowledge. Anticipating the following chapter, it will also address the philosophical implications of artificial systems emulating human experts.

A motivation for some of the research discussed in Chapters 2 and 3 was that a sound understanding of the cognitive processes underlying expert behaviour should make it possible to develop artificial systems that are able to perform as well as, or even better than, human experts. The field of expert systems is a recognised and active discipline of computer science, and there
are a number of expert systems developed to the point that they are crucial to some industries (for example, banking and geology). Chapter 14 discusses strengths and weaknesses of such systems as well as other related issues. What are the differences between expert systems and human experts? How is knowledge elicited from experts? Can experts really communicate their perceptual and procedural knowledge? What do expert systems teach us about human expertise and human psychology more generally?

Finally, the conclusion weaves together several of the strands that were discussed in previous chapters. It proposes a synthesis, highlighting the issues that should be addressed in future research.

1.6 Chapter Summary

This chapter started with a discussion of the two key meanings of expertise: knowing-that and knowing-how. It then considered a number of definitions of expertise, each emphasising a different aspect (e.g. type of measurement or place in society). It was noted that many of these definitions suffer from weaknesses. A fair amount of space was devoted to the question as to why we should study expertise. The main reasons were: the development of better methods for coaching and instruction in general, the prospect of building artificial-intelligence programs that can emulate human experts and to improve our understanding of human cognition.

1.7 Further Reading

Several edited books provide worthwhile overviews of the various ways expertise has been studied. Chi et al. (1988), Ericsson and Smith (1991b), Ericsson (1996b) and Staszewski (2013a) focus on cognitive psychology, although other viewpoints are occasionally discussed. Feltovich et al. (1997) discuss both human and machine expertise, with a special interest in the role of context. Ericsson et al.’s handbook (2006) provides a comprehensive overview of the psychology of expertise, with a strong emphasis on deliberate practice. Another handbook (Simonton, 2014) focuses on extreme forms of expertise – genius.
In this index f represents figure and t represents table.

A
Aaron (computer program), 111–112
Abbott, A., 205–206, 214
Abnormalities, 91
Absolute pitch (AP), 21–23
Academic appointments, gender differences and, 131–132
Action, chunking and, 32, 140
ACT-R (Adaptive Control of Thought) tutor, 141–142
Adaptive expertise, 242
Adequacy criterion, 85
Advanced beginner stage, of intuition expertise, 99
Affordances, 201
Against Method (Freyerabend), 220
Age
intelligence and, 116
memory and, 159–160
strategies, memory and, 162
Ageing, expertise and careers of great creators as function of, 167–169
deliberate practice and, 166–167
effects of, cognition and, 165
moderating variable, expertise and, 166
paradox, 165
theories of, 166–167
AI. See Artificial intelligence
Alchemy and Artificial Intelligence (Dreyfus), 224
American functionalism, 204
Anticipation tasks, 176
Anticipatory schemata, 16–17
Anti-intellectualism, 219
Applied philosophy, 226
Arational thought, 225, 226
Architectonic ear, 123
Aristotle, 218
Articulatory loop, 52
Artificial intelligence, creativity and, 111–112
Artificial intelligence (AI)
Dreyfus’s critique of, 224
expert system research, contributions, 235–236
expert systems and, 231–232
knowledge and, 241
knowledge elicitation techniques, 233–234
knowledge representation, 230–231
psychology, knowledge representations and, 232
research, decline of, in expert systems, 234–235
search and, 241–242
Asperger’s, 134
Assumption of monotonicity, 146, 148
Assumption of rationality, 239–240
Atonal music, 22
Attributions, gender and, 133
Automatisation, problem-solving and, 75–76
Autonomous phase, behaviour and, 75–76
B
Backward search, 67
Base rate neglect, 87
Beer-mat knowledge, 212
Behaviours, in/out group, 199
Being-in-the-world, 224
Biases
confirmation, 200
decision making and, 87–88
egocentric epistemic, 222
gender and, 133
publication, 189
Binet, Alfred, 115–116
Binet-Simon test, 116
Biomedical knowledge, 45
Bipolar disorder, 130
Birth order effect, intelligence and, 106
Bodily-kinaesthetic intelligence, 118
Bounce (Syed), 143
Bounded rationality, decision making and, xvi, 85–86, 114, 240–241

Brain imaging
- chess and, 173
- episodic memory and, 172
- functional reorganisation of, retrieval structures, templates and, 180
- fusiform face area and, 177
- intelligence, gender, head size and, 178–180
- intelligence, gender differences and, 181–182
- knowledge acquisition and, 174
- memory experts and, 172–173
- skill acquisition in novices, 170–172
- smart drugs and, 182–183
- sports, neuro-expertise and, 174–176
- visuospatial function and, 180–181

Brain imaging techniques, 171
Brain plasticity, 175, 180, 182
Brainstorming, 199
British Journal of Psychology, 57
Brute force, 235
Bureaucracies, 204

C
Calibration measures, 191
CaMeRa computation model (Tabachnek-Schijf), 75
Career age, 167
Careers, ageing and, 167–169
Carlsen, Magnus, 148
Cartesian dualism, 219
Categorisation, 27–28
Charmides (Plato), 222
Chase, W. G., 29–33, 79–80
Chassy, P., 100
Cheating
- in science, fraud and, 194–195
- in sports, 195–196
Check configurations, 173
Chess
- age, memory and, 160
- blindfolded playing, 141
- gender and, 133–134
- intelligence and, 120
- memory, 29–39
- neuro-expertise and, 173
- perception, 11–14
- problem solving, 62–73
- and reliable measure of expertise, 144
talent and, 121–123
Chi, M. H., 160
CHREST simulation program, 16, 36, 37–38, 244, 250
evaluation of, 56–58
- template theory, chunking and, 52–56
CHUMP, computer simulation program, 82–84
Chunking theory (Chase & Simon), 30–33, 48–60
age and, 165
ageing model and, 166
digit span test and, 161
EPAM-IV and, 52
expert’s superiority, recall tasks and, 33
knowledge structured as, 33–36
long-term memory storage and, 36–37
practice, talent identification and, 139–140
problem-solving and, 79–80
random positions and, 39
revisions of, 51
template theory, CHREST and, 52–56
Chunks, memory and, 30
Circumferential scan pattern, 15
Classification, of expert roles, 210–211
evaluation, 214–215
periodic table of expertises, 211–214
Clinical knowledge, 45
Clinical vs. Statistical Prediction (Meehl), 90
Closure, professions and, 204
Coding
- location, 37
- LTM and, 41
- musical stimuli, 25
Cognition, 4
deceptive moves and, 176
decision making and, 88–89
domain general mechanisms and, 158–159
situated action and, 201
smart drugs and, 182–183
Cognitive biases, 88
Cognitive liberty, 183
Cognitive phase, behaviour and, 75–76
Cohen, Harold, 111–112
Collaboration, research and, 197–200
Collins, M. H., 211–214
Collins and Evan’s periodic table of expertises, 211–214
Common law, 208
Communication, stories and, 200
Compensatory mechanisms, age and, 165
Competence stage, of intuition expertise, 99
Computer simulations, 58
Concept formation, 27–28
Concept learning, 27–28

Concept of Mind, The (Ryle), 219

Conceptual knowledge, problem-solving and, 70–71
Condition, chunking and, 32, 140
Confirmation bias, 200
Conflict resolution rules, 82
Connectionist models, computer simulation program, 81–82
Connoisseurship, 97
Conscientiousness, 129
Constraint attunement theory, 58–60
Contributory expertise, 211r, 213
Control, professions and, 204
Control condition, 47
Copy task, 30
Core encoding and, 232
templates and, 54
Core mirror neuron system, 176
Corticmotor system, 174
Cost-benefit analysis, 86
Court, experts in, 208–209

Creating Minds (Gardner), 118
Creating thinking, tests of, 105
Creativity
artificial intelligence and, 111–112
intelligence and, 119
mental health and, 130
personality and, 128–129
stages of, 108
tacit knowledge/knowing, 219–220
Creativity, expert, 103–113
education/training, development of and, 106–107
estimations of, reliability, 103–104
family environment/socioeconomic conditions, development of and, 106
sociocultural contexts, development of and, 107–108
tests of, 105–106
Creativity, theories of
as product of unconscious mechanisms, 108–109
as search through problem space, 109–110
selection mechanisms and, 110–113
Creativity test, 76–77
Credentials, 211r, 214, 222–223
Csikszentmihalyi’s phenomenon of flow, 146

D
Darwinian mechanisms of variation and selection, 110
Data, fraud/cheating, science and, 194–195
Data mining, 235
Deception identification, 176
Decision experts, 211
Decision making
biases approach to, 87–88
fast/frugal heuristics, 88–89
group phenomena, experts and, 197–200
heuristics approach to, 86–87
intuition and, 97–98
naturalistic, 89–91
rationality/bounded rationality, 85–86, 239–241
satisfaction of search effect and, 91
Shanteau’s framework for, 92
in sports, 93–95. *See also* Sports, decision making in
Declarative memory, 182–183
Defining expertise, 2–6, 239
de Groot, Adriaan, 11–14, 62–63, 78
Deliberate play, 152
Deliberate practice, 142–149
ageing and, 166–167
assumption of monotonicity, 146, 148
data supporting, 143–144
evidence against, 144–149
herding and, 199–200
individual vs. team, 146–147
lack of enjoyment, 146
logical/methodological issues, 147–148
other interests, training in, 147
talent vs. practice, 149
theory of, 142–143
violation of 10-year, 10,000-hour rules, 146
DENDRAL expert system, AI and, 231–233, 242
Detection tasks, 19
Deutsch’s scale illusion, 21
Development, expertise and diachronicity and, 243
domain-general mechanisms, 158–159
domain-specific mechanisms, 159–161
of expert systems, 236
gifted children, 162–163
savants and, 163–164
Diachronicity, expertise and, 243
Differential predictions of talent/practice, 150–151
Digital Equipment Corporation (DEC), 232–233
Digit span test, 40, 53, 57, 161
Direction identification, 176
Disagreement, between experts, 221–222
Discipline integration, expertise and, 250
Discrimination, expertise and, 213–214
Discrimination measures, 191
Discrimination network, 31, 32f, 53f
Dispositions, 211t, 212, 219
Divergent production tests, 105
Divergent semantic units, 105
Diversification, specialisation in sports and, 151–152
Domain general mechanisms, development and, 158–159
Domain selection, 249
Domain-specific mechanisms, development and, 159–161
Doping, sports cheating and, 195–196
Downward discrimination, 214
Dreyfus, H. L., 99–100, 224–225
Dreyfus, S. E., 99–100
Dreyfus & Dreyfus theory of expert intuition, 99–100
Dreyfus & Dreyfus theory of expertise, 225, 226, 244
Drugs smart, neuro-function and, 182–183
sports, cheating and, 195–196
DSM-III (Diagnostic and Statistical Manual of Mental Disorders), 130
Dualism, 219
Dual theories, of intuitive expertise, 100–101
Durkheim, Emile, 204

E
Economic null hypothesis, prediction failure and, 187
Economic representations, problem-solving and, 74–75
Economics, rationality and, 240
Economy, professions and, 204
Economy and Society (Weber), 203–204
Education creativity development and, 106–107. See also Learning
environment, society and, 243–244
generativity and, 242
talent/practice, 150–151
nature vs. nurture, 243
rationality and, 241
smart drugs and, 182–183
Egocentric epistemic bias, 222
Ego strength, 130
Ehrlich Paul, 187–188
Einstellung effect, 77, 88
Electroencephalography (EEG), 171, 179
Elo, A., 122, 167
Elo rating, 3–4, 72, 121
Emotional responses, 154
Empathizing-systemizing theory, 134
Empirical data, chunking theory and, 48
Energy, personality and, 128
Environment expertise, society and, 243–244
gifted children and, 162–163
EPAM-IV, memory theory and, 52, 56–58
Episteme (Aristotle), 218
Epistemic peer disagreement, 221–222, 223
Epistemic peers, 221–222
Epstein, D., 3
Equal-eight view, 222
Ericsson, K. A., 49–51, 143
Errors, in scientific research/publication, 189–190
Ethical issues, expertise and, 247
Evaluation of expert classification, 214–215
problem-solving and, 68–69
Evans, R., 211–214, 225–226
Event-related potentials (ERP), 171
Existential intelligence, 118
Expansive mode, 228
Expected utility theory, 86
Experience, 211t, 214
Expert analysts, 210
Expert creativity, 103–113. See also Creativity, expert
Expert insight, 101–102
Expert intuition. See Intuition, expert
Expertise communication and, 207–208
defining/identification and, 2–6, 239
diachronicity and, 243
dual meaning of, 1–6
ethical issues, 247
failure of, 91
Index

five-stage model of (Dreyfus & Dreyfus), 225
four tensions, 245–246
generativity and, 242
interactional, 208
knowledge and, 241
medical, 14–16
methods/theories, 244–245
nature vs. nurture, 243
perceptual superiority and, 17–18
performance-based, 248–249
performance/reputation-based, 239
periodic table of, 211–214
philosophy, applications of and, 226–228
positive/negative aspects, 237–238
practical implications, 246–248
rationality and, 225–226, 239–241
reputation-based, 249
search and, 241–242
specialisation effects in, 72–73
transversal themes of, 238–239
why study?, 6–7
Expertise reversal effect, 154
Expertise stage, of expert intuition, 99
Expert knowledge, 250
Expert learners, 155–156
Expert Mirror Neuron System, 176
Expert-novice comparisons, 154
Expertocracy, society and, 193
Expert patients, 197
Expert performance, IQ as predictor of, 119–120
Expert researchers, 210
Expert roles, 210–211
Expert(s)
becoming an, 248–249
biases in, 87–88
in court, 208–209
disagreements between, 221–222
failure of, 187–188
identification of, 222–224, 248
society and. See Society, experts and super, 250–251
why do we believe, 200–201
Experts, classification of
Collins and Evans’s periodic table of expertises, 211–214
Mieg’s, role classification, 210–211
Expert systems, 209
AI and, 231–233
Dreyfus critique of, 224–225
knowledge elicitation techniques, 233–234
research, contribution of, 235–236
research, decline of, 234–235
Expert teachers, 153–155
Exposure time, 46
Expressive ear, 123
Expressive face, 123
Expressive face, 123
External expertise, 211
External expertise, 211
External problem space, 78–79
Extra-weight view, 222
Extroversion, 128, 129
Eye-hand span, 26
Eye movement patterns, 14–16, 24, 56, 70, 78, 82
Eye-voice span, 26
F
Facial recognition, 176–177
Factor analysis, 116
Fads, prediction, experts and, 188
Failure, of experts, 187–188
political science, predictions in, 190–192
scientific research and, 188–190
Fake experts, 222–223
Family conditions, creativity development and, 106
Fast and frugal heuristics, 88–89
Fast Company, 143
Fear of success, 133
File-drawer problem, 190
Final phase, of problem-solving, 64
First-person subjective experience, 224
First phase problem-solving, 63–64
Five-stage model of expertise (Dreyfus & Dreyfus), 225
Fixation of abnormality, 15
Fixed localisation vs. perceptual expertise, 176–178
Flexibility, teaching and, 154
Flow (Csíkszentmihalyi’s theory of), 128, 146
Formal experts, 211
Formalisms, 231
Forward search, 67
Four tensions, talent vs. practice, 245–246
Frame, 232
Frames of Mind (Gardner), 118
Framing effect, 87
Framing phase, of problem-solving, 64
Fraud
fake experts, 222–223
in science, 194–195
Functional Magnetic Resonance Imaging (fMRI), 171, 177
Functional reorganisation, 174, 180
Fusiform face area, 177
Future of Management, The (Hamel & Breen), 188

G
Galton, Francis, 115
Gardner, Howard, 118
Gardner’s approach, to intelligence and talent, 118
Gaze-contingent window paradigm, 13–14, 15
Gender differences
Asperger’s, 134
brain functions and, 178
empathizing-systemizing theory, 134
females, verbal IQ/speed tasks and, 135–136
gaps, in sciences/arts and, 131–136
intelligence and, 134–136, 181–182
in mathematics, 132
in sports performance, 124
statistical explanations, 132–134
in talent, 117, 119
testosterone exposure in utero, 180
Gene-constellation hypothesis, intelligence and, 120–121
General Intellience, 134
Generalisability of skills, 150–152
General Problem Solver (Newell & Simon), 224
General theories, 103
Generation of solutions, creativity and, 109–110
Generativity, expertise and, 242
Generic description, 50–51
Genetic markers, sports and, 124–126
Genetics of talent, 149
Genius in All of Us, The (Shenk), 143
Geschwind and Galaburda’s theory of talent, 122, 180–181
Gestalt psychology, 16
Gifted children, development and, 162–163
Gilmartin, K., 36
Glass ceiling, 133
Global-focal search model, 15
Goal-directed activities, 142, 151
Gobet, F., 33–36, 100
Greek philosophy, 217–218
Group phenomena, experts, decision making and, 197–200
Groupthink, 199
Guilford’s theory of intelligence, 105

H
Halo effect, media and, 193
Handedness
of chess players, 122
talent, visuospatial domains and, 180–181
Head size, intelligence and, 179
Herding effect, 199–200
Hereditary Genius (Galton), 115
Heredity, intelligence and, 120–121
Heritability
personality, talent and, 127–128
sports and, 124–125
Heterarchy, 232
Heuristic approach, to decision making, 86–87
Heuristics
artificial intelligence and, 111–112
decision making and, 88–89
expert insight and, 102
experts as, 206–207
Hierarchical clustering, 234
Hierarchical organisations, 204
Hierarchies, 232
Hindsight bias, 87
Holding’s theory, problem-solving and, 80
Holistic perception, 16–17
Holistic understanding, 226–227
Homing heuristic, 66
Horizontal décalages (Piaget), 159
Human rationality, tests of, 89
Human search, computer models of, 80–84
CHUMP/SEARCH, 82–84
connectionist models, 81–82
NSS, MATER and, 80–81
PERCEIVER, 81

I
Identical elements, theory of (Thorndike and Woodworth), 151
Identifying expertise, 239
Idiographic approach, 103
IF-THEN rules, 232
Illumination stage, of creativity, 108
Illusion of control, 200
Immediate reinvestigation, 64–66
Implicit knowledge, 234
Implicit learning, 234
Implicit memory, 234
Incubation stage, of creativity, 108, 109
Individual differences, in talent, 117
Index

Inert knowledge, 142
Inflexibility (rigidity of thought), 76–78
Information, knowledge and, 197
Information processing, intelligence and, 178
Information theory, 59
In-group behaviors, 199
Insight, expert, 101–102
Intellectualism, 219
Intelligence, talent and, 115–121
biological mechanisms linked to, 178–180
components of, 120
Gardner's approach (5 intelligences), 118
gender differences and, 134–136, 181–182
gene-constellation hypothesis, 120–121
IQ as predictor of expert performance, 119–120
performance and, 129
Intelligent tutoring, 141–142
Interactional expertise, 208, 211t, 212–213
Interfering task, 25, 39–40
Inter-individual variability, deliberate practice and, 145
Intermediate effect, in medicine, 44–46
Internal expertise, 211t, 213
Internal meta-expertises, 211t, 213
Internal problem space, 78–79
Internet, society, expertise and, 196–197
Interpersonal intelligence, 118
Inter-piece latencies, 31
Inter-rater correlation, 117
Intersection positions, 55
Intuition, expert, 97–101
Dreyfus & Dreyfus, 99–100
dual theories, 100–101
in nursing, 226
Simon's theory and, 98–99
template theory of, 100
Inverted U-curve, 44
Invulnerability, 199
IQ (intelligence quotient), 90, 116
birth order effect and, 106
chess and, 120
gender differences and, 132–133
as predictor of expert performance, 119–120
savants and, 164
J
Jurisdiction, professions and, 205
Justice, miscarriage of, expertise and, 186–187
K
KEKADA production system, 112
Kinematic cues, 175
Kintsch, W., 49–51
Knowing how, 227
Knowing how, philosophy and, 219–220
Knowing How and Knowing That (Ryle), 219
Knowing that, 227
Knowledge
acquisition of, 141, 174
assessment of, 227–228
cognitive development and, 159
communication and, 207–208
compensatory mechanisms, age and, 165
conceptual, problem-solving and, 70–71
elicitation techniques, expert systems, AI and, 233–234
expertise and, 241
expertise classification and, 212–213
information and, 197
metacognitive skills and, 159
organisation, schemas and, 42–43
procedural, 234
professions and, 205
search and, 241–242
stereotypical thinking and, 107
testability of, 220
ubiquitous tacit, 215
Knowledge, chunks and, 33–36
Knowledge representation
AI and, 230–231
psychology and, 232
L
Labour division, 204
Language learning, 56
Large complexes, 70–71
Latencies, 35
Laypeople, musical expertise and, 23
Learners, expert, 155–156
Learning
expert learners, 155–156
expert teachers, 153–155
machine, 235
practice, based on, 139–149. See also Practice, talent and
talent, based on, 138–139
transfer and, 150–152
Learning by example, 140
Linear performance, 44
Linguistic experience, 214
Linguistic fluency, 212
Linguistic intelligence, 118
Local discrimination, 211, 213
Location coding, 37, 48
Logic, formalisms and, 231
Logical-mathematical intelligence, 118
Logic of Scientific Discovery (Popper), 220
Long-term memory (LTM)
chunks and, 31, 32, 33
chunk storage and, 36–37
schemas and organisation of knowledge, 42–43
slow encoding times, 39–43
template theory, CHREST and, 52–56
See also Memory entries
Long-term working memory (LTWM), 49–51
Loose hierarchy, 232
Lose-shift hypothesis, 66
LTM. See Long-term memory
LTWM. See Long-term working memory
Lum, G., 227–228
M
Machine learning, 235
Macrostructure, of search, 66–67
Macysma program, expert system, 234
Mad genius theory, 130
Management science, prediction failure and, 188
MATER, computer simulation program, 80–81
Mathematics, gender differences in, 132, 133–134
Matthew effect, 247
Maximisation, 85
McDowell’s theory of rationality, 225–226
Media, expertise and, 193
Medical expertise, 14–16, 44–46
Medical research, expert failure and, 188–190
Mednick’s theory of creativity, 105
Meehl, P. E., 90
Memory
age and, 159–160, 165
Chase & Simon’s Chunking Theory, 29–33
chunking theory, 30–33
creativity and, 109
digit span test and, 161
domain-specific, decline in, 166
episodic, brain function and, 172
experts, brain function and, 172–173
functional reorganisation of brain and, 180
intermediate effect, in medicine, 44–46
in music, 47
randomisation and, 37–39
savants and, 163–164
smart drugs and, 182–183
in sport, 46–47
STM capacity, LTM encoding times and, 39–43
task expertise and, 180
Memory, theories of, 48–60
constraint attunement theory, 58–60
EPAM-IV, 52
long-term working memory, 49–51
revisions of chunking theory, 51
skilled memory theory, 49
Mental age, 116
Mental calculations, brain function and, 172
Mental energy, 178
Mental health issues, talent and, 129–130
Mental imagery, 32, 55–56
Meritocracy, 193
Merton, R. K., 247
Metacognitive skills, 159
Meta-criteria, 211
Meta-DENDRAL, expert system, AI and, 232
Meta-expertises, 211
t
Method of loci, 40, 49
Methodology, deliberate practice and, 147–148
Mind over Machine (Dreyfus), 225
Mind-set effect, 77
Mind’s eye, problem-solving and, 32, 53f
Mirror-neuron system, 176
Mnemonics, 39–40
Monotonicity, assumption of, 146
Moral authority, 204
Motivation, personality, creativity and, 128, 163
Motor behaviour, 75–76
Index

Motor-evoked-potential amplitudes, 174
Motor skills, neuro-expertise, sports and, 174–176
Multidimensional scaling, 234
Music
 intelligence and, 120
 memory in, 47
 neuro-expertise and, 173–174
talent in, 123
Music, perception in, 19–27
 absolute pitch, 21–23
 eye-hand span, 26
 eye movements, 24
 laypeople, implicit musical expertise, 23
 proofreader’s area, 26–27
 short presentations, 24–25
 sight-reading, 24
Musical ear, 123
Musical intelligence, 118
MYCIN, expert system, AI and, 231–232, 234

N
Naturalistic decision making, 89–91
Naturalistic intelligence, 118
Nature vs. nurture, expertise and, 243, 250
Neural network simulations, 167, 182–183
Neuro-expertise
 chess and, 173
 environment, society and, 243–244
 fixed localisation vs. perceptual expertise, 176–178
 functional reorganisation of brain and, 180
 gender differences and, 181–182
 Geschwind and Galaburda’s theory, 180–181
 intelligence, biological mechanisms and, 178–180
 memory experts and, 172–173
 mental calculations, data, 172
 music and, 173–174
 nature vs. nurture, 243
 skill acquisition, in novices and, 170–172
 sports and, 174–176
 taxi drivers, knowledge and, 174
Neuroticism, 128, 129
Newel and Simon’s problem-space theory, 78–79, 112

Nicomachean Ethics (Aristotle), 218
Node, 53, 62f, 231
Nomothetic theories, 103
Non-immediate reinvestigation, 64–66
Nootropic drugs, education, brain function and, 182–183
Novice stage, of intuition expertise, 99
NSS, computer simulation program, 80–81

O
Object discrimination, 176–177
Object recognition, 177
Ontology, 235–236
Optimism, 192
Option selection, sports, decision making and, 94–95
Ordinary savants, 163
Orientation zone, 70
Outliers (Gladwell), 143
Output quantity, creativity and, 112

P
Pain sensitivity, sports performance and, 125–126
Parafoveal information, 15
Partitioning technique, 35
Pattern recognition
 expert intuition and, 98
 insight and, 102
 problem-solving and, 69–70
 search and, 82
 theory of search, 83f
Peak, of career, ageing and, 167–168
Pearson, Karl, 116
Peers, disagreement between experts, 221–222
PERCEIVER, computer simulation program, 81
Perception
 de Groot research on, 11–14
 in music, 19–27. See also Music, perception in
 problem-solving role, 70
 in sports, 17–19
Perceptual behaviour, 75–76
Perceptual cue, 201
Perceptual expertise, 27–28, 177–178
Perceptual expertise vs. fixed localisation, 176–178
Perceptual learning, 27–28
Perceptual resources, 91
Perfectionism, 129
Index

Performance
of experts, failure and, 188
rationality and, 240
recall, age and, 165
rehearsal and, 162
Performance-based expertise, 239, 248–249
Periodic table of expertise, 211–214
Peripheral information, 15
Personality, talent and, 127–129
creativity and, 128–129
need for achievement, 129
Personal Knowledge (Polanyi), 219–220
Pessimism, 192
Phenomenology, 224
Philosopher kings, 218
Philosophy
ancient Greek, 217–218
disagreements, between experts and, 221–222
Dreyfus’s critique, of expert systems and, 224–225
environment, society and, 243–244
expertise, applications of, 226–228
identification, of experts, 222–224
knowing-how, tacit knowledge and, 219–220
rationality, expertise and, 225–226
of science, expertise and, 220–221
Phronesis (prudence), 218
Physical Review Letters, 190
Physics, representations, problem-solving and, 73–74
Piaget’s theory of development, 158–159, 162
Planning, problem-solving and, 67–68
Plato, 217–218
Platykurtic, 132
Poincaré, Henri, 108
Polanyi, Michael, 219–220
Political anarchy, creativity and, 108
Political science, predictions in, 190–192
Politics as a Vocation (Weber), 204
Popular understanding, 212
Population, famine and, prediction failure, 187–188
Population Bomb, The (Ehrlich), 187–188
Positron emission tomography (PET) scans, 171
Practice
professions and, 205–206
talent vs., 245–246
Practice, talent and, 123
ACT-R, intelligent tutoring and, 141–142
chunking theory and, 139–140
deliberate practice, 142–149. See also Deliberate practice
differential predictions, transfer and, 150–151
identifying strategies, 139
music, neuro-expertise and, 173–174
template theory, 140–141
Predictions, expertise and, 185–186
failure of experts, 187–188
media and, 193
in political science, 190–192
Preparation stage, of creativity, 108
Prescriptive mode, 227–228
Presentation time, age and, 165, 166–167
Primary source knowledge, 211, 212
Problem-solving
conceptual knowledge and, 70–71
de Groot’s research and, 62–63
directionality of search, 67
evaluation and, 68–69
expert systems and, 233
macrostructure of search, 66–67
mind’s eye and, 32
pattern recognition, role in, 69–70
perception role in, 70
phases of, 63–64
planning and, 67–68
progressive deepening, expertise effects and, 64–66
representations role in, 73–75. See also Representations, problem-solving and
Problem-solving theories
chunking/template, 79–80
computer models of human search, 80–84. See also Human search, human search
Holden’s theory, 80
Newell and Simon’s problem-space theory, 78–79
Selz-deGroot Framework, 78
Problem space theory (Newell & Simon), 78–79, 109–110
Prodigious savants, 163
Productions (rules of the type), 32, 140, 167, 232
Productive thinking, framework, 78
Index

Product theories, 58–60
Professions, sociology of
 Abbot’s studies of, 205–206
 characteristics of, 203–205
 communication and, 207–208
 early works on, 203–205
 heuristics, experts as, 206–207
 role classification and, 211
 trust and, 209
Proficiency stage, of intuition expertise, 99
Progressive deepening, 63
 expertise effects in, 64–66
 problem-solving and, 64
Proofreader’s error, 26–27
Protocol analysis, 233
Psychology
 of intelligence, 115, 116
 knowledge and, 241
 knowledge representations and, 232
 nature vs. nurture, 243
Psychometric tests, 105
Psychopathological mechanisms, 134
Psychopathy, talent and, 129–131
Psychoticism, 128
Publication bias, scientific research and, 189–190
R
Raab, M., 94–95
Rage to master, 163
Randomisation, expert superiority and, 37–39
Rationalisation, 199
Rationality
 decision making and, 85–86, 89–91
 expertise and, 225–226, 239–241
Rational organisations, 204
Reaction times, age and, 165
Reading music, 24
Reasoning, age-related decline in, 166
Recall task, 29–30, 33
Referred expertise, 211f, 214
Rehearsal strategy, 162
Reingold, E. M., 12–14
Relative experts, 210
Relative pitch, 22
Reliability, of creativity estimations, 103–104
Remote Associates Test (RAT) of creativity, 76–77
Replication, expert failure and, 188, 189–190

Representations
 knowledge, AI and, 230–231
 language, 235
 situated action and, 201
Representations, problem-solving and,
 73–75
 automatisation/rigidity of thought, 75–78
 economics, 74–75
 physics, 73–74
Republic, The (Plato), 217–218
Reputation-based expertise, 239, 249
Research, scientific
 contribution of expert system, 235–236
 on expertise, 248
 further, expertise and, 250
 groups and, 198
Research scientific
 expert failure and, 188–190
Retraction, scientific literature and, 190
Retrieval cues, 173
Retrieval structures, 39–40, 42f, 48, 49
 EPAM-IV and, 52
 functional reorganisation of brain and, 180
LTWM and, 49–51
Right-reasons view, 222
Rigidity of thought, problem-solving and, 75, 76–78
Role models, creativity and, 106–107
Rorschach test, 90, 105
Routine expertise, 242
Ryle, Gilbert, 219–220
S
Satisfaction of search effect, 91
Satisficing, 85
Satisficing mechanism, 80
Savants, development and, 163–164
Savoir comment faire, 227
Savoir faire, 227
Schemas
 knowledge organisation and, 42–43
 knowledge representations, psychology and, 232
 problem-solving role, 70–71
Schizophrenia, 130
Scholastic Aptitude Test for Mathematics, 132
Science, fraud/cheating, experts and, 194–195
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science as a Vocation (Weber), 204</td>
</tr>
<tr>
<td>Science philosophy, expertise and, 220–221</td>
</tr>
<tr>
<td>Scientific literature, publication bias and, 189–190</td>
</tr>
<tr>
<td>Script formation, 45</td>
</tr>
<tr>
<td>Scripts, 232</td>
</tr>
<tr>
<td>Search</td>
</tr>
<tr>
<td>brute, 235</td>
</tr>
<tr>
<td>computer models of human, 80–84.</td>
</tr>
<tr>
<td>See also Human search, computer models of</td>
</tr>
<tr>
<td>directionality of, 67</td>
</tr>
<tr>
<td>expertise and, 241–242</td>
</tr>
<tr>
<td>macrostructure of, 66–67</td>
</tr>
<tr>
<td>through problem space, creativity and, 109–110</td>
</tr>
<tr>
<td>SEARCH, computer simulation program, 82–84</td>
</tr>
<tr>
<td>Search for Excellence (Peters & Waterman), 188</td>
</tr>
<tr>
<td>Search tree, 62–63</td>
</tr>
<tr>
<td>Season of birth, talent/intelligence and, 122</td>
</tr>
<tr>
<td>Selection mechanisms, creativity and, 110–113</td>
</tr>
<tr>
<td>Self-regulation, 155, 156</td>
</tr>
<tr>
<td>Selz, Otto, 78</td>
</tr>
<tr>
<td>Selz-de Groot framework, problem-solving and, 78</td>
</tr>
<tr>
<td>Semantic networks, 232</td>
</tr>
<tr>
<td>Semantic reasoning, 37</td>
</tr>
<tr>
<td>Semantic web, 235</td>
</tr>
<tr>
<td>Sexism, 133</td>
</tr>
<tr>
<td>Shanteau’s framework, for decision making, 92</td>
</tr>
<tr>
<td>Short-term memory (STM), 25, 39–43.</td>
</tr>
<tr>
<td>See also Memory entries</td>
</tr>
<tr>
<td>Sight-reading, musical perception and, 24, 26</td>
</tr>
<tr>
<td>Simon’s theory, of expert intuition, 98–99</td>
</tr>
<tr>
<td>Simulated eye, 53f</td>
</tr>
<tr>
<td>Situated action, experts and, 201</td>
</tr>
<tr>
<td>Situational elements, of intuition expertise, 99</td>
</tr>
<tr>
<td>Skill acquisition, in novices, 170–172, 174–176</td>
</tr>
<tr>
<td>Skilled memory theory, 49</td>
</tr>
<tr>
<td>Skills, generativity and, 242</td>
</tr>
<tr>
<td>Sloboda, J. A., 24–27</td>
</tr>
<tr>
<td>Slots</td>
</tr>
<tr>
<td>encoding and, 232</td>
</tr>
<tr>
<td>templates and, 54</td>
</tr>
<tr>
<td>Slotted schemata, 57</td>
</tr>
<tr>
<td>Smart drugs, intelligence, neuro-function and, 182–183</td>
</tr>
<tr>
<td>Social closure, 203</td>
</tr>
<tr>
<td>Society, experts and, 182–183</td>
</tr>
<tr>
<td>believing experts, why?, 200–201</td>
</tr>
<tr>
<td>expertise and, 243–244</td>
</tr>
<tr>
<td>expertocracy, 193</td>
</tr>
<tr>
<td>failure of experts, 187–188</td>
</tr>
<tr>
<td>fraud/cheating, in science, 194–195</td>
</tr>
<tr>
<td>group phenomena, 197–200</td>
</tr>
<tr>
<td>Internet and, 196–197</td>
</tr>
<tr>
<td>justice, miscarriage of and, 186–187</td>
</tr>
<tr>
<td>media and, 193</td>
</tr>
<tr>
<td>political science, predictions and, 190–192</td>
</tr>
<tr>
<td>predictions, difficulty of making correct, 185–186</td>
</tr>
<tr>
<td>scientific research and, 188–190</td>
</tr>
<tr>
<td>situated action and, 201</td>
</tr>
<tr>
<td>sports, cheating in, 195–196</td>
</tr>
<tr>
<td>Sociocultural contexts, of creativity development, 107–108</td>
</tr>
<tr>
<td>Socioeconomic conditions, creativity development and, 106</td>
</tr>
<tr>
<td>Sociology</td>
</tr>
<tr>
<td>diachronicity and, 243</td>
</tr>
<tr>
<td>knowledge and, 241</td>
</tr>
<tr>
<td>Socrates, 222</td>
</tr>
<tr>
<td>SOS effect, decision making and, 91</td>
</tr>
<tr>
<td>Spaghetti model, 244f</td>
</tr>
<tr>
<td>Span of apprehension, 26</td>
</tr>
<tr>
<td>Spatial ability, 123</td>
</tr>
<tr>
<td>Spatial intelligence, 118</td>
</tr>
<tr>
<td>Spearman, Charles, 116</td>
</tr>
<tr>
<td>Spearman’s theory of intelligence, 116, 117f</td>
</tr>
<tr>
<td>Specialisation</td>
</tr>
<tr>
<td>communication and, 207–208</td>
</tr>
<tr>
<td>diversification in sports vs., 151–152</td>
</tr>
<tr>
<td>expertise and, 248</td>
</tr>
<tr>
<td>Specialisation effects, in expertise, 72–73</td>
</tr>
<tr>
<td>Specialisation paradigm, 72–73, 193</td>
</tr>
<tr>
<td>Specialist expertise, 211f, 212</td>
</tr>
<tr>
<td>Specialist knowledge, 212</td>
</tr>
<tr>
<td>Specialist tacit knowledge, 211f, 212</td>
</tr>
<tr>
<td>212–213</td>
</tr>
<tr>
<td>Speed tasks, gender and, 135–136</td>
</tr>
<tr>
<td>Spiral of improvement, 140</td>
</tr>
<tr>
<td>Spiritual intelligence, 118</td>
</tr>
</tbody>
</table>
Index

Sports
 cheating in, 195–196
 expertise and, 246–248
 genetics, talent, performance and, 124–126
 memory in, 46–47
 neuro-expertise and, 174–176
 perception in, 17–19
 specialisation vs. diversification in, 151–152
Sports, decision making in, 93–95
 option selection, 94–95
 task-specific probabilities, use, 93–94
Standard deviations, 132
Status, believing experts and, 200–201
Statutory law, 209
STEM disciplines, 119
Stereotype threat, 133
Stereotypical thinking, knowledge and, 107
STM. See Short-term memory
Stories, communication and, 200
Strategies, development and, 162
Strict hierarchy, 232
Super-expert, 5, 250–251
Symbolic processing, 81
System of playing method, 71
Systems communication, 207
T
Tacit Dimension (Polanyi), 220
Tacit knowledge, 215, 219–220
Talent
 based on intelligence, 115–121. See also Intelligence, talent and in chess, 121–123
gender differences and, 131–136. See also Gender differences
 genetics of, 149
 Geschwind and Galaburda’s theory of, 122
gifted children and, 162–163
 in music, 123
 personality and, 127–129. See also Personality, talent and practice vs., 149, 245–246
 psychopathy and, 129–131
 in sports, 124–127
Talent Code, The (Coyle), 143
Talent identification, 138–139
Talent is Overrated (Colvin), 143
Tangled hierarchy, 232
Task-specific probabilities, sports, decision making and, 93–94
Teachers, expert, 153–155
Team expertise, 250
Techno (craft), 218
Technical connoisseurship, 211t, 213
Technocracy, 193
Template theory
 CHREST, chunking and, 52–56
evaluation of, 56–58
 of expert intuition, 100
 functional reorganisation of brain and, 180
 principles of education, 140
 problem-solving and, 79–80
Testimony, experts and, 208
Testosterone exposure, in utero, talent and, 122, 180
Theoretical discipline, 226
Theoretical inferences, AI and, 112
Theories, of memory, 48–60
Thorndike and Woodworth’s theory of identical elements, 150–151
Thurstone, Louis, 116
Time cost, of cognitive processes, 52
Torrance’s tests of creative thinking, 105
Track record, 211t, 214
Training
 creativity development and, 106–107
deliberate practice and, 147
 functional reorganisation of brain and, 180
 perceptual patterns and, 18, 23
 skill acquisition and, 170–172
 sports, neuro-expertise and, 174–176
Trait approach, 205
Transcranial magnetic stimulation (TMS), 172, 174, 175–176
Transfer, 150–152
differential predictions, of practice/talent, 150–152
diversification, specialisation in sports and, 150–152
 expertise and, 250
Transverse themes, in expertise, 238–239
Truly random positions, 39
Trust, expertise and, 209
Tutoring, 141–142
Two-stage detection model, 15
U
Ubiquitous discrimination, 211t, 213
Ubiquitous expertises, 211t, 212
Ubiquitous tacit knowledge, 211t, 212, 215

Copyrighted material – 9780230276246
Unconscious mechanisms, creativity and, 108–109
Unconscious processing, 234
Understanding, learner’s, 228
United States v. Johnson, 208

V
Value, creativity and, 103
Valuation phase, of problem-solving, 64
Variability, measuring, 145
VAX computer systems, 232–233
Verbal communication, gender differences, 181–182
Verbal IQ, 120, 135–136
Verification stage, of creativity, 108
Visual processing, 177
Visual recall tasks, 25
Visual search, 19
Visuospatial delayed-match-to-sample task, 170–171

Visuospatial domains, handedness and talent in, 122, 180
Voxel-based morphometry, 175

W
Water-level task, 76
Watson, John, 142
Weber, Max, 203–204
Weighted probabilities, 64
Weschler-Bellvue test, 90
What Computers Can’t Do: The Limits of Artificial Intelligence (Dreyfus), 224, 241
Win-stay hypothesis, 66
Wisdom of Crowds, The (Surowiecki), 197–200
Witnesses, expert, 208–209

X
XCON, expert system, AI and, 231–233