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Any explanation of human performance in cognitive tasks must take ac-
count of a broad range of factors. In memory or concept learning tasks
these begin, on the stimulus side, with the structure of the task itself and
the knowledge that is embedded in it, then move to the subject side—to
the ways in which subjects interpret the task (their representation of the
goal and of the task structure)—thence to the strategies they adopt for
attacking it, and finally to the capabilities, some of them “built in,” some
of them acquired through previous learning, that they apply to it (Newell &
Simon, 1972, ch. 14).

I. Inter-Subject Differences and Commonalities in Performing
—"Cognitive Tasks

Subjects who represent the same task in an experiment differently, employ
different strategies in approaching it, or have different capabilities in the
form of memory and processing capacities and relevant knowledge can be
expected to exhibit different behavior while performing it. If the differences
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among subjects are small, we may be satisfied in averaging over our sample
in order to provide a general, and approximate, explanation of the behavior
of “typical subjects.” If the differences are large, averaging over subjects
will provide only a rough and fuzzy picture of the behavior and a corre-
spondingly incomplete account of it. Even if we are primarily interested
in those mechanisms that are largely shared among subjects, we are more
likely to get a clear view of them if we strip off the differences before trying
to discern the similarities.

One approach to sorting out the individual differences and commonalities
we can expect to encounter among subjects in a particular task is to under-
take deliberately to magnify the differences by inducing different groups
of subjects to adopt different problem representations or different strate-
gies, or by selecting groups of subjects who can be expected to possess
quite different bodies of knowledge about the task. In this way, the remain-
ing human commonalities are revealed as the residual, so to speak, that is
shared by the different experimental conditions.

At least three significant lines of experimental work in recent decades
have pursued this strategy: one line focusing on the knowledge subjects
have (comparing the performance of experts with that of novices) (e.g.,
Chase & Simon, 1973; de- Groot, 1946; Ericsson & Staszewski, 1987); a
second focusing on differences in problem representation, induced by pres-
enting the task through distinct, but isomorphic, instructions (e.g., Hayes &
Simon, 1974); a third focusing on differences in strategy, induced by includ-
ing strategy recommendations as part of the problem instructions (e.g.,
Medin & Smith, 1981).

In this chapter, we discuss this third line of work, taking as an example
for analysis the paper by Medin and Smith (1981) on concept attainment,
and using the EPAM (Elementary Perceiver and Memorizer) theory, a
familiar computer simulation model that has been used to simulate a wide
and growing range of memory tasks. We describe how EPAM can model
the different strategies subjects employed—differences induced by the
three sets of task instructions. In doing this, we show how a formal simula-
tion model can embody not only mechanisms that explain human common-
alities (““invariant psychological laws”), but also the mechanisms that inter-
pret different representations and different strategies for the same problem.
The model thereby provides a way of unifying the theory of the behaviors
of individuals who approach a task with wide differences in knowledge,
previous experience, and task interpretation.

Changes in behavior, including those we describe as “learning” may
result from changes in any one or more of these components. Differences
among subjects in the representations and strategies they employ may
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reflect differences in the knowledge they bring to the task, or differences in
what they learn from feedback provided by or during the task performance.

NEEDS, GoaLs, TASK REPRESENTATIONS, STRATEGIES

When attention has been turned to a particular need or task, one or more
goals may be evoked from memory that, if attained, would meet the need
or complete the task. With the goal in place, a subgoal may then be set of
representing the task in such a way that the cognitive processes can go to
work on it. The task representation is usually called the problem space,
and task activity can be thought of as a search through the problem space
that, if successful, attains the goal. As it is seldom either possible or efficient
to search the problem space in a routine, systematic way, the system must
also generate a strategy to guide the search (Newell & Simon, 1972, pp. 788
789).
We can view the process as involving the sequence:

need — attention — goal — problem space — strategy — search

We should not be misled, however, into thinking that problem-solving
efforts typically follow these steps in an inexorable linear order. “Linear
thinking” (often contrasted with “creative thinking”) is a much maligned
phrase that is irrelevant to the picture we have just drawn. The process
does not usually advance without many detours and retreats. To the diagram
above, we must add numerous feedback loops. Ideas evoked while designing
the problem space may lead back to reformulation of the goal; strategies
often show the problem space to be incomplete or inappropriate and cause
a return to restructuring it. The system that behaves in this way therefore
requires a metastrategy to monitor its progress and decide when it should
reconsider earlier steps.

Efforts toward structuring the problem (creating and modifying the prob-
lem space) usually predominate during the early stages of activity, and
efforts toward searching a particular problem space predominate during
the later stages, but with much intermingling of all the processes, particularly
when a problem presents difficulty or novelty. In a difficult problem like
the Mutilated Checkerboard Problem, which requires discovery of a nonob-
vious problem space for solution, subjects, who initially adopt an “‘obvious™
problem space, generally return to searching for a new problem representa-
tion after an hour or more of unsuccessful and ultimately frustrating search
in the “obvious” but inappropriate space; and if they then discover a more
appropriate representation, solve the problem after one or two minutes of
search in the new space (Kaplan & Simon, 1990). Failure-produced frustra-
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tion followed by sudden success is characteristic of so-called insight
problems.

Of course, failure is not always followed by success, nor does frustration
always evoke a new problem space. Prolonged failure may simply lead to
a brief, lengthy, or permanent abandonment of the task. Switches from
one task to another are mediated by the whole structure of emotions,
motives, and external demands, which must be included in any comprehen-
sive model of the system and its behavior.

For example, Johannes Kepler, in one of his early works, announced a
law stating that the periods of revolution of the planets increased with the
square of their distances from the Sun; but, after about a decade, decided
that the fit of the law to the data was unsatisfactory. Resuming his search,
in about a month’s time he found the law that we now regard as correct
(Kepler’s Third Law: the period varies as the 3/2 power of the distance).
We know also that during the intervening decade, Kepler’s attention was
distracted by other pressing matters—not the least that his mother was
being tried for witchcraft! He resumed his search shortly after she was
found innocent.

We have laboratory notebooks for extended periods of a few scientists
(e-g., Darwin, Faraday, Krebs, but not Kepler) that cast light on these
attention-control processes, at least on a coarse time scale.

Il Architecture and Learning in Task Performance

In accounting for behavior in cognitive tasks, we need to deal with several
channels of causation: the influences of the task domain, the problem space,
and the subjects’ strategies.

A. THE Task DoMAIN

First, the behavior will depend on the characteristics of the task domain
(Newell & Simon, 1972). In the case of very simple tasks, the goal and task
domain essentially determine the behavior: the actor takes the “obvious”
action that achieves the goal. If we know that someone’s goal is to reserve
time on a parking meter, we readily predict that he or she will insert one
or more quarters in the slot.

Notice that, even in this case, we must make a number of implicit assump-
tions: that the actor is familiar with parking meters, knows what denomina-
tion of coin is needed, knows where the slot is and how to insert the
coin, or can read the appropriate instructions on the meter to obtain this
information. Notice also that our prediction of the behavior depends on
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our own access to the knowledge we assume the actor is using and our ability
to apply it appropriately: in particular, that we use the same “‘obvious”
representation for the problem that the actor uses. The use of these assump-
tions to make predictions of behavior is what Newell (1990) has called
‘W A great many, perhaps most, of our
predictions of behavior in everyday life are made in this way, that is, by
emulation; and we are often quite unaware of the assumptions we are
making about the actor’s knowledge and ability (or inability) to reason.

B. REPRESENTING THE TASK: THE PROBLEM SPACE

Second, in all cases beyond those in which the behavior can be predicted
at the knowledge level, the behavior will depend on the way in which the
actor represents the task: the problem space. Generating an appropriate
problem space for a task may vary in difficulty from the trivial (as in
the previous example) to the essentially impossible (a problem space for
inferring Kepler’s laws of planetary motion from gravitational attraction
before the invention of the calculus). In the earlier example of the mutilated
checkerboard problem, we have already shown how critical the selection
of problem space can be in determining the subsequent behavior—and its
failure or success.

C. STRATEGIES
e

Third, because the problem space prescribes only the representation of the
task and not the precise way in which it will be attacked, the actor’s behavior
will depend on the search strategies that are adopted for exploring the
space for a solution. It is almost always inefficient, and usually infeasible,
for people to search a problem space either exhaustively or randomly.
Various procedures are adopted to guide the search in productive direc-
tions, so that the task can be accomplished after a very small part of the
total space has been examined. In favorable circumstances (e.g., solving a
linear equation in algebra), the actor may know a systematic procedure
(algorithm) that is guaranteed to lead to the solution after a few steps. In
most less formal domains, no such algorithms exist, and problem solvers
must be satisfied with selective rules of thumb (heuristics) that often lead
to solutions without excessive search, but are not guaranteed to do so.

Interwoven with the goals, the problem space, and the strategies is the
knowledge the actor possesses that is relevant to understanding and formu-
lating these elements. Some of this knowledge will be obtained from the
task instructions (thereby involving learning processes); much of it will
already be stored in memory (as the result of previous learning).
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D. ALL BeHavior Is SociaL

It follows from these characteristics of the situation that in the laboratory
for cognitive psychology we are studying the behavior not of otherwise
undefined specimens of Homo sapiens, but of particular sets of human
beings who, as the result of both initial endowment and a mountain of
experiences since birth, carry around in their heads a large body of knowl-
edge and skills that is mostly social in origin and is enormously variable
among subject populations as we move from one culture to another or
from one time to another. In this important sense, all cognitive psychology
is social psychology, and we have to look hard to discover invariants of
behavior that remain stable over cultures and eras.

In cognitive research, we have typically used two means to finesse this
problem of the social relativity of behavior. First, we summarize the knowl-
edge and skills of subjects drawn from a relatively homogeneous population
under brief, but informative, labels like *college sophomores at XYZ Uni-
versity.” Second, we devote a large part of our research energy (or did so
traditionally) to tasks that call largely for knowledge that all members of
the subject population can be presumed to possess (e.g., puzzles like The
Tower of Hanoi or Missionaries and Cannibals). In recent years, in contrast,
we have also moved into research on knowledge-rich task domains by
studying “expert” and ‘novice”’ populations—again assuming homogeneity
within each population, but admitting the possibility of large differences
between the populations.

More and more, especially as our research moves in the direction of
knowledge-rich tasks, we will be obliged to learn, by pretesting and in
other ways, what attitudes toward goals, what information about problem
representations, and what information about strategies subjects bring to
the tasks we set for them. We will also use the experimental instructions
and various kinds of pretraining to alter the goals, problem spaces, and
strategies that subjects have available.

E. THE MoDEL MuUST INCORPORATE ATTENTION CONTROL
w«_‘

Human bounded rationality requires people to perform their tasks using
only the knowledge they have, however much that may depart from the
reality it purports to describe. Moreover, the inferences they will draw from
their knowledge will be severely limited by their computational capabilities.
Finally, of the body of knowledge they have stored in memory, only a
fraction—often a very small fraction—of the knowledge potentially rele-
vant to a particular task will be evoked initially, or even in the course of
time, by the presentation of the task and the instructions.
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Under these circumstances, to understand and predict behavior requires
us to understand and predict what part of the information in memory will
actually be evoked and applied in the course of task performance. What
will subjects attend to and when? Under what circumstances will shifts of
attention occur and evoke new information or lead to the loss of information
previously evoked? A theory of cognition must incorporate a theory of
attention, and, as we saw earlier, attention is closely linked to motivation
and even to emotion.

In the remainder of this chapter, we undertake to make these ideas more
concrete by showing how they enter into the modeling of behavior observed
in a well-known piece of experimental work on concept attainment and
categorization. As the basis for our modeling, we use the EPAM system,
which, first developed about 1959 to account for a number of the phenomena
of rote verbal learning, has been extended in the succeeding 35 or more
years to account for a progressively wider range of phenomena of perception
and memory.

II. Strategy, Goals, Attention, and Task Representation
in EPAM

Each EPAM simulation has three components: (1) an experimenter module
representing the activities of the experimenter; (2) a subject module repre-
senting the activities of the subject; and (3) a manager madel, which coordi-
nates the two whenever time is added to the simulated clock.

The subject module requires problem spaces and strategies much as a
mathematical model requires parameters. EPAM has not yet matured to
the point where it determines its own goals and builds its own problem
spaces. Currently, its problem spaces and strategies are programmed for
each experiment and form an adjustable component of the model.

Just as mathematical model builders seek to keep the number of numeri-
cal parameters low and their values consistent across many tasks, the EPAM
programmer seeks to keep the strategies as simple and constant as is possi-
ble. Strategies are changed from one simulation to another only when
necessary to correspond with differences in the experimental task or differ-
ences in the directions given to the subjects.

A. STRAIEGY

Often the results produced by EPAM are direct outcomes of the strategies
chosen, and are interpreted as such. For example, the very first simulation
using EPAM predicted the invariant serial position curve as a consequence
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of an attention strategy, called the “anchor point” strategy, used by people
when familiarizing themselves with an ordered list (Feigenbaum & Simon,
1962). EPAM was programmed to learn the list by working from the anchor
points inward. For most lists this led EPAM to choose the first and last
elements as the obvious anchor points. The program thus demonstrated
that an anchor point strategy could match quantitatively the ubiquitous
serial position curve. Introduction of other, attention-attracting anchors
(e.g., a word printed in red) automatically produced a von Restorff effect.
Similarly, a 1967 simulation (Gregg & Simon, 1967) cast light upon a
contradictory pattern of results where otherwise-similar experiments some-
times produced “‘one-trial” learning and sometimes incremental learning.
When EPAM employed a strategy of rehearsing one syllable pair at a time
until they were completely learned, it produced one-trial learning. Where
it used an *“all-at-once” strategy, stopping rehearsal of one pair whenever
a new pair was presented, its learning was incremental. Postexperimental
reports by subjects confirmed that this choice in rehearsal strategy corres-
ponded to individual success with one-trial learning. EPAM explained how
the strategy chosen by human subjects would determine whether they
learned a syllable in a single trial or by increments over several trials.

B. GoaLs
M

The goal of the subject module in many EPAM simulations is to add
information to long-term memory and then later retrieve that information.
For example, in a rote learning task the system gradually creates a net for
paired associates indexed by the stimuli, so that when a stimulus is pre-
sented, a chunk, comprising the stimulus together with the response, can
be accessed and the system can give the correct response. Similarly, in a
concept-formation task the system creates a net or nets such that the stimu-
lus will elicit a chunk or chunks indicating the correct category, and the
system can respond with that category. In both tasks the subject has to
associate stimuli with correct responses. The main difference between the
tasks is that, whereas each stimulus elicits a different response in the paired-
associate task, several stimuli all elicit the same response in the categoriza-
tion task. Subjects form generalizations that put many stimuli in the same
class in the latter task.

Studies of subjects’ strategies in concept attainment (e.g. Bruner, Good-
now, & Austin, 1956; Hunt & Hovland, 1961; Hunt, Marin, & Stone, 1966)
have shown that people try to find a simple economical criterion involving
only a few features that enables the system to categorize a great many
stimuli. Such economy is impossible in the paired-associate task.

Within a system like EPAM, such economy can be achieved if the system
finds efficient tests while building the net. For example, if all members of
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a “Category A” are red, and all members of a “Category B” are blue, an
EPAM-like system would seek to put a test for color at the top of its
discrimination net. Then all red items would sort to a single node and all
blue items to a different node.

In earlier versions of the EPAM model (versions I through IV), the
system could not replace an inefficient test after it had been added to the
discrimination net. The most recent version, EPAM V, permits the insertion
of effective tests above inefficient tests in the discrimination net. This can
occur whenever a generalization is studied.

For example, a universe of simple geometric figures defined by three
attributes, size, color, and shape, could include large red circles, small red
circles, large blue squares, and so on. If all red squares, regardless of size,
are in category A, then a generalization can be formed that ‘“‘red squares
regardless of size” elicit Category A.

Assume that EPAM V had created the inefficient discrimination net
shown in Fig. 1. Although EPAM can recognize small red squares as mem-
bers of Category A, it currently misrecognizes large red squares as members
of Category C. EPAM V, at this point, needs to replace an inefficient test
for size in its discrimination net with a test for color, which it does by
discovering the appropriate generalization and then studying it.

There are many processes that concept formation systems could use to
discover that red squares of any size are members of Category A. For
example, the CLS (concept learning) system of Hunt et al. (1966) examined
members and nonmembers of a category in order to discover a combination
of features that appear together in all members but not together in any

Category C Category B @ Category C
RED REEN

CategoryA  Category B

Fig. 1. An inefficient discrimination net.
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(OOLORD  Category ©

RED, REEN

Category A  Category B

Fig. 2. EPAM’s modified discrimination net.

nonmember. The RULEX (Rule-Plus-Exception) system of Nosofsky,
Palmer & McKinley (1994) systematically tried single features or combina-
tions of features in order to find a feature or a set of features that was
sufficiently predictive.

A third process, that used by EPAM V in Medin and Smith’s experiment,
compares succeedmg pairs of members of a category and forms a rule that
classifies togeilier two members (e:g., a large red square and a small red
square) that are found to differ by only a single feature. We do not hold
that this method is used most often by people, nor is it the only system that
could be used by EPAM in order to discover rules; in fact, versions of the
other systems programmed for EPAM work at least as well. The advantage
of the minimal-pairs system is that it enables EPAM to simulate both the con-
cept formation task and the rote learning task with the same default strategy.

Once a rule has been formed, EPAM studies it (see Fig. 2). When it
studies ‘“‘red square of any size” it sorts to the test for SIZE and inserts a
test for the relevant attribute, COLOR, and a branch for red, producing
the net shown in Fig. 2. Now all red squares will be correctly sorted to
Category A.!

C. THE MEDIN AND SMITH TAaSK

In this section, we discuss the model’s simulation of the experiment con-
ducted by Medin and Smith (1981). Our main purpose is not to compare

! Implementational note: EPAM V permits multiple tests at a node. The new test for
COLOR is simply added to the top of a list of tests at the node. The old test for SIZE remains
at the same node in the net under the test for COLOR and is used when none of the branches
for the test for COLOR applies.
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EPAM with other models of categorization in their goodness of fit to the
data, but to illustrate how directions given to subjects may be incorporated
into the EPAM subject module as different strategies. These diverse strate-
gies produce different patterns of response.

A sequence of stylized (Brunswick & Reiter, 1938) faces (see Fig. 3) are
presented to subjects, the faces varying with respect to eye height (EH), eye
separation (ES), nose length (NL), and mouth height (MH), and subjects are
instructed to assign them to Category A or Category B. In the five stimuli
that the experimenter assigned to Category A (see Table I), four have high
eyes and four have long noses, while three have wide eye separation and
three have high mouths. Thus, positive values (1s) on these traits tend to
indicate membership in A; negative values (0s), membership in B, with
high eyes and long noses being the more reliable indicators. Four of the
five stimuli have three of the positive traits, and one (Face 7) has only two.
Faces 4, 7, and 15 all have both of the “reliable” traits; Faces 5 and 13
have only one each.

In the four stimuli that the experimenter assigned to Category B, three
have low eyes, three have short noses, three have low mouths, and two
have narrow eye separation. Hence, the first three of these characteristics
are criterial for B. Two of the Category B faces have two traits each that
are criterial for A, and one for B (Faces 12, 2); one face (14) has one trait
that is criterial for A, and two for B; one (10) has no traits criterial for A,
and three for B.

We might expect that almost any scheme for learning to assign the faces E

to these categories will place especial weight on the two reliable traits for
A and on the relative number of A traits and B traits a stimulus possesses. By
whatever mechanisms these criteria are implemented, one could therefore
predict that 4, 7, and 15 among the A faces, and 10 and 14 among the B

CategoryA. ‘ . . .

Face 4 Face 5 Face 7 Face 13 Face 15
e . . . .
Face 2 Face 10 Face 12 Face 14

Fig. 3. Sequence of stylized (Brunswick) faces assigned to categories based on eye, nose,
and mouth characteristics.
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TABLE 1

ATTRIBUTE STRUCTURE OF CATEGORIES
USED IN THE EXPERIMENT

Attribute value

Face
number EH ES NL MH
A exemplars
4 1 1 1 0
7 1 0 1 0
15 1 0 1 1
13 1 1 0 1
5 0 1 1 1
B exemplars
12 1 1 0 0
2 0 1 1 0
14 0 0 0 1
10 0 0 0 0
New transfer items
1 1 0 0 1
3 1 0 0 0
6 1 1 1 1
8 0 0 1 0
9 0 1 0 1
11 0 0 1 1
16 0 1 0 0

Note. EH = eye height; ES = eye separation; NL. =
nose length; MH = mouth height. See text for explanation
of binary notation. From Medin & Smith (1981).

I
faces would be easy to learn; while 5 and 13 among the A faces and 2 \ X
and 12 among the B faces would be hard to learn. We would not expect"
experimental instructions or other similar interventions to change very
much this division of stimuli between “easy” and ‘‘hard.” We will see that,
in general, these predictions hold up well, but that we can refine them a bit
further if we infer from specific experimental instructions the corresponding
learning strategies the subjects will use.

D. EPAM SmMULATION OF MEDIN AND SMITH (1981)

Medin and Smith presented three groups of subjects with separate instruc-

tions for the categorization task: (1) “standard instructions,” (2) “‘rules-

plus-exception instructions,” and (3) “prototype instructions.” We have

translated each set of instructions into a strategy programmed into the

EPAM module. Each strategy has two interrelated components: (1) a recog- —]
e

s ——
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nition strategy and (2) a learning strategy. First, we look at each of these
instructions and our interpretation of it by a program for the EPAM subject
module. Then we compare the results of employing each of the three
strategies to simulate the experimental behavior with the behavior of Medin
and Smith’s subjects in the corresponding experimental condition.

In proceeding in this way, we are adding additional degrees of freedom
to mgmﬁm‘smuegies we assume), thereby reducing its
parsimony and predictive force. We have to assume that the strategies we
construct are veridical interpretations of the task instructions, and a plausi-
ble case can usually be made for more than one strategy as compatible
with the instructions. Selecting a particular strategy from this set is like
selecting particular parameter values to fit a theory that contains parame-
ters. We will be interested in the sensitivity or insensitivity of the predictions
to postulated strategy differences. .\

A more powerful theory, a future EPAM, would generate the strategies
automatically from the task mstructlotm a manner similar to the way
tharthe UNDERSTAND p program generates problem representations from
verbal task instructions (Hayes & Simon, 1974). Such a theory would have
substantially fewer degrees of freedom, leaving no room for the modeler’s
judgment in associating strategies with instructions. But this more complete
version of the EPAM theory has yet to be constructed.

The Medin and Smith experiment had three phases: a learning phase
with feedback, which continued for 32 trials or until the subject had a single
perfect trial; a transfer phase without feedback, which continued for 2 trials;
and a speeded-classification phase, with feedback, for 16 trials during which
time the subject’s response latencies were measured.

The subject routine responds with the same algorithm for every stimulus
or stimulus—response pair presented:

1. Subject waits until the next stimulus appears in its visual sensory store.

2. If the stimulus that appears states that the experiment is done, subject
exits this loop.

3. Subject responds to the stimulus, using its find-category routine. This
routine can vary with different instructions.

4. Subject waits for the next stimulus or response to be presented in the
visual sensory store.

5. If the stimulus that appears states that the experiment is done, subject
exits this loop.

6. If the next stimulus or response is a stimulus rather than a response,
subject returns to Step 3. (This occurs during the transfer phase, in which
feedback is not given.)

7. Subject studies the contents of the visual sensory store and the visual
imagery store using the study-category routine. This routine can vary with
the instructions.
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8. Subject replaces the current contents of the visual-imagery store with
a copy of the current contents of the visual-sensory store.
Step 9. Subject returns to Step 1.

Different find-category routines and study-category routines were used
by the subject in the different experimental conditions.

E. STANDARD INSTRUCTIONS

We have identified the standard instructions in the Medin and Smith experi-
ment with the default concept attainment strategy of the EPAM model.
The standard instructions simply tell the subjects to guess at first, but then
to pay attention to the feedback so that they can assign each face to its
appropriate category. T

EPAM’s default find-category routine is to sort the stimulus in the net
and report the category at the node it reaches. If it cannot find a category
associated with the stimulus, then it guesses.

EPAM’s df_@t_slgc}tc_gtegory routine is the following algorithm:

1. If the find-category routine responds correctly, do nothing.

2. Pick a random number from 0 to 99, if it is over 17, then do nothing.

3. If a previous study-category routine is busy transferring information
to long-term memory (it takes EPAM 5 s of background learning time to
add a new chunk such as a new node or response to its discrimination net),
do nothing.

4. If the last stimulus (currently in the visual-imagery store) and the
present stimulus (currently in the visual-sensory store) share the same
response and have at least three features in common, then form and memo-
rize a generalization consisting of the features that are on both stimuli and
associate that generalization with the correct response.

5. Otherwise associate the present stimulus with the correct response.‘}

Ny e A -

As an example, the discrimination net produced by a particular run of
EPAM in the standard instructions condition is illustrated in Fig. 4. The net
is shown as it was at the conclusion of the learning phase of the experiment.

This net has a test EH for eye height at its top node and additional tests
for nose length and mouth height within the net. Examination of the net
reveals the following:

1. Faces 4, 7, and 15, which have EH = 1 but do not have NL = 0, are
sorted to a node that states that they belong to Category A. EPAM must
apply two tests in order to reach this terminal. Assuming that it takes
EPAM about 10 ms to notice that a new face has been presented, 100 ms
to enter a discrimination net, and 250 ms to find each of the attribute
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FACE 10 FACE 4
FACE 14 FACE7
FACE 15
B 1 0 A
FACE 2 FACE 13
? B
FACES FACE 12

Fig. 4. Discrimination net produced by EPAM in the standard instructions condition in
the Medin and Smith experiment.

values (EH and NL) using tests that require separate eye fixations, with
the discrimination net of Fig. 4, it takes EPAM 610 ms to categorize Face
4,7, or 15 as Category A. T

2. Face 13 has EH = 1 and NL = 0 but not MH = 0. It is sorted to a
terminal that is labeled as belonging to Category A. It takes EPAM about
860 ms to categorize this face: 10 ms to notice that a new face has been
presented, 100 ms to enter the net, and 750 ms to perform the three tests.

3. Face 12 has EH = 1, NL = 0, and MH = 0. It takes EPAM 860 ms
to categorize it as a member of Category B. )

4. Faces 10 and 14 (EH = 0 and NL = 0) are each sorted in 610 ms to
a terminal labeled for Category B.

5. Face 2 (EH = 0, NL = 1, and MH = 0) is sorted in 860 ms to a
terminal labeled for Category B.

6. Face 5(EH = 0,NL = 1, and MH = 1) sorts to an ambiguous node
that is not labeled with a category. During the 26th trial of the learning
phase, EPAM guessed correctly that Face 5 was a member of Category A
and as aresult, EPAM was able to categorize all of the faces correctly during
that trial, even though it had not yet learned the correct categorization of
Face 5. During both of the transfer phase trials, EPAM guessed incorrectly
that Face 5 was a member of Category B. At the beginning of the 16-trial
speeded-classification phase of the experiment, it took EPAM 860 ms to
sort Face 5 to the node for its face, and an additional 1000 ms to guess the
value of a category, for a total of 1860 ms. During this phase of the experi-

‘/,;
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ment, however, EPAM learned the correct category for Face 5, and then
only 922.5 ms was taken by EPAM to categorize Face 5.

F. RULES-PLUS-EXCEPTION INSTRUCTIONS

The rules-plus-exceptions instructions that Medin and Smith (1981) gave
their second group of subjects were much more complex than the standard
instructions. The former described a two-stage learning process and a com-
plex recognition process.

During the first stage of the learning process the subjects were told to
create a rule, based on nose length, find which category long noses usually
belong to, and then associate short noses with the other category. In this
first stage, EPAM’s subject module creates a rule net and as the first stimuli
come in, determines which category is most often associated with short
noses and which category with long noses. At the completion of this stage,
the subject module creates a net to cache the results of this rule: If NL =
1, the net sorts to a node labeled for Category A. If NL = 0, the net sorts
to a node labeled for B.

During the second learning stage subjects were instructed to memorize
exceptions to the rule. EPAM stores exceptions in a second net for excep-
tions. The terminals in this net reports “Yes” if the item that sorts to the
node is an exception and “No” if it is not.

Medin and Smith describe the rules-plus-exceptions strategy to subjects
in the following general fashion:

When you have mastered the task, you will be doing something like looking to see if
the face is one of the exceptions, if so, make the correct response, if not, apply the rule
for short and long noses. (p. 247)

EPAM's find-category routine uses a recognition strategy that corres-
ponds closely to thése instructions. First, it looks in the exceptions net to
sve-whether the stimulis is-amexcepfion. Then it sorts in the rule net to
find out whether the rule classifies the face as A or B. If the item is not
an exception, EPAM categorizes the item according to the decision of the
rule net. On the other hand, if the item is an exception, EPAM reverses
this decision. If the rule has not yet been learned, EPAM accesses the
hypothesis currently being held in short-term memory and categorizes the
item according to the prediction that would be made by that hypothesis.

EPAM’s study-category routine for the rules-plus-exceptions condition
is also a two-stage algorithm. In the first stage, if the subject has not yet
learned the rule, it forms a hypothesis, and studies the rule following a
strategy very much like that outlined in the instructions. Specifically, it
accepts a nose-length rule, such as “‘short nose predicts Category A,” when
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its excess of correct over incorrect predictions exceeds 3, and accepts the
opposite nose-length rule (i.e., ““short nose predicts Category B”’) when
the excess of correct over incorrect predictions dips below zero.

The second stage is very much like the find-category routine except that
the system is determining whether or not the face is a member of the
exceptions net. Specifically:

1. If the find-category routine responds correctly, do nothing.

2. Pick a random number from 0 to 99, if it is over 17, do nothing.

3. If a previous study-category routine is busy transferring information
to long-term memory, do nothing.

4. If the last stimulus (which is currently in the visual-imagery store) and
the present stimulus (which is currently in the visual-sensory store) share the
same response and at least three features in common, form and completely
memorize a generalization consisting of the features that are on both stimuli
and label that generalization as exception or not, consistently with the
present stimulus.

5. Otherwise label the present stimulus as an exception or not, as the >
case may be. '

The two discrimination nets after completion of EPAM’s learning stage
in a run of the rules-plus-exceptions condition are illustrated in Fig. 5. The
net on the left is a rules net with a single test for nose length. The net on
the right is an exceptions net with a top test for mouth height. In this case,

RULE NET EXCEPTION NET

0 1  FACE14
FACE 15
NO NO NO
FACE 10 FACE 2 FACES
FACE?7 FACE 4 FACE 12

FACE 13

Fig. 5. Two discrimination nets after completion of EPAM’s learning stage in a run of
the rules-plus-exceptions condition.
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EPAM went through all 32 learning trials without a perfect trial, and,
indeed, using this net, EPAM currently misclassifies both of the exceptions
to the rule, Faces 13 and 2.

It currently takes EPAM about 960 ms to categorize each face: 10 ms
to react to the stimulus, 100 ms to enter each of the two nets, and 250 ms
to sort through each of the three tests (the test for NL in the Rule net and
the tests for MH and ES in the Exception net.

During the speeded-classification phase of the experiment, the system
adds additional tests to the net, and these permit it to discriminate the
exceptions. As a result, the average categorization latencies for Faces 4, 5,
13, 2, and 12 are higher than 960 ms and with the guessing that occurs
before the categories for the new nodes are learned, the average latencies
for the two exceptions, Faces 13 and 2, are over 1350 ms each.

As Faces 13 and 2 are the “exceptions” in this condition, we would
expect them, with almost any strategy consistent with the instructions, to
be more difficult to learn than the others. In all three experimental condi-
tions these faces are among the three most difficult for EPAM, but they
are especially difficult in the Rules and Exceptions condition. On the other
hand, Face 12, which is not an exception to the long-nose rule, but is first
or second in difficulty in the other two conditions, is fourth (and very much
easier than Faces 13 and 2) in this condition.

G. PRrOTOTYPE INSTRUCTIONS

Medin and Smith’s instructions for their ‘‘prototype” subjects were to
memorize what A faces look like and what B faces look like. They were
told that they later would have to answer questions about the characteristics
of each type of face. EPAM memorizes types of faces by making a separate
net for each type. T T— - B
“"Medin and Smith’s instructions were: ‘‘we want you to use these general
impressions to help you classify these faces.” EPAM’s find-category routine
for the prototype condition does this by sorting each stimulus in both nets.
If a face is found to be a member of one category but not the other, EPAM
responds with the former category. If it is found to be a member of both
or is not found to be a member of either, the subject module guesses the
category. If it guesses wrong, it elaborates the net for the correct category
in which to include this stimulus.

EPAM'’s study-category routine for the prototype condition follows al-
most the identical strategy as the study-category routine for the standard
condition, except that there is the additional step: the study-category routine
must determine which net to use for studying. Specifically:

1. If the find-category routine responds correctly, do nothing.
2. Pick a random number from 0 to 99, if it is over 17, do nothing.

1
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3. If a previous study-category routine is busy transferring information
to long-term memory, do nothing.

4. If the last stimulus (which is currently in the visual-imagery store) and
the present stimulus (which is currently in the visual-sensory store) share the
same response and at least three features in common, form a generalization
consisting of the features common to both stimuli. If the stimulus was not
identified as a member of the correct net, then memorize the generalized
stimulus completely in the correct net and associate it with “Yes” in that
net. On the other hand, if the stimulus was identified as a member of the
correct net, then it must have been misidentified as a member in the other
net, so memorize the generalized stimulus completely in the other net and
associate it with “No” in that net.

5. If the stimulus was not identified as a member of the correct net then
associate it with “Yes” in that net. If the stimulus was identified as a
member of the correct net, then memorize the stimulus completely in the
other net and associate it with “No” in that net.

The two discrimination nets that resulted from one particular run of
EPAM in the prototype-instructions condition are illustrated in Fig. 6.

1. Face 10 sorts to a node that identifies members of the B Net and to
another node that does not identify it as a member of the A Net. The
subject responds with category B in 1210 ms: 10 ms to react to the stimulus,
200 ms to enter the two nets, and 1000 ms to sort through the four tests.

2. Faces 4,7, 13, and 15 are members of the A Net but are ambiguous
in the B Net. They are correctly identified as members of Category A.

ANET BNET
YES
Case 14 0 0 1
Case 13
Case 15
Case 5
0 YES ; YES YES
Case7 Case10 Case14 \!
” Case 4 Case2 Case5
) Case 2 ? ?
Case 12 ?
Case 10 Case7 Case 15
Case4 Case 13
Case 12

Fig. 6. Two discrimination nets resulting from one run of EPAM in the prototype-
instructions condition.
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3. Face 12 is ambiguous in both nets, so it is categorized by guessing. It
was correctly categorized by guessing on the 32nd learning trial.

4. Faces 2, 5, and 14 are identified as members of both nets, so they are
categorized by guessing. All three were correctly categorized by guessing
on the 32nd learning trial.

H. CoMPARISON WITH HUMAN DATA

A single free parameter called the “study parameter” was adjusted so that
approximately the same proportion of EPAM-simulated subjects as real
subjects would attain the same overall result in the learning condition.
Medin and Smith reported that 14 of 32 people met the criterion of a
perfect trial in both the standard and rules-plus-exceptions conditions, while
only 8 of 32 people met the criterion in the prototype condition. With the
study parameter set at 18, so that EPAM studied only 18% of the time
when studying was possible, 151 of 320 simulated subjects met the criterion

in the standard condition, 129 of 320 met the criterion in the rules-plus- |
exceptions condition, and 63 of 320 met the criterion in the prototype !
condition, closely matching the ratios for the human subjects. Both EPAM

and people found it easier to meet the criterion in the standard and rules-

plus-exceptions condition than in the prototype condition.

Table II compares Medin and Smith's human subject error data with the
results from 100 runs of the EPAM model for each condition.

There was no special adjustment of parameters for this simulation, and
simple and straightforward interpretations of the instructions were used for
EPAM. For all three experimental conditions, the Pearsonian correlation
between human subjects and EPAM of the numbers of errors for the
various faces is very high: .93, .93, and .77 for the three conditions.

In EPAM as in the human experiments, Faces 13, 2, and 12 (except 12
in the Rules and Exceptions condition) produced by far the largest number
of errors. There was little difference in rank order among the several
conditions for either the human subjects or EPAM. In this important re-
spect, the instructions had little effect on the outcomes, affecting only the
overall level of difficulty of the task as a whole. The relative reduction in
difficulty of Face 12 in the Rules and Exceptions condition was reflected
in the performance of both subjects and EPAM.

Face 7 produced fewer errors than Face 4 in all conditions, which, as
Medin and Smith point out, is consistent with context models but not with
independent-cue models, where the net effect of cues is additive. As EPAM
is, in many respects, highly nonlinear and nonadditive in its operation,
hence a “‘context” model in the sense of Medin and Smith, we would predict
this result. On average, both the subjects and EPAM found the prototype

7

£
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TABLE II

MEAN NUMBER OF ERRORS FOR EACH FACE DURING INITIAL LEARNING AS
A FUNCTION OF INSTRUCTIONS

Instruction

Rules and
Standard Exceptions Prototype

Face number People EPAM People EPAM People EPAM

4 4.5 9.0 39 6.5 7.7 11.2
5 82 10.8 59 85 9.2 119
7 4.2 6.6 33 4.0 6.7 9.9
13 11.9 113 10.7¢ 18.8% 13.7 12.8
15 28 5.6 28 45 49 8.6
2 12.9 14.0 13.8° 18.5¢ 103 16.0
10 44 6.6 38 49 42 104
12 15.2 12.8 6.3 77 174 15.1
14 6.6 84 6.8 53 8.7 124
M 79 95 6.3 8.7 92 120
3 45 29 37 58 42 24
Pearson's r 93 93 77

? Face was an exception in rules-plus-exceptions condition.

condition hardest, the standard condition next hardest, and the rules-and-
exceptions condition easiest.

The range of errors from the easiest to the most difficult faces was smaller
for EPAM than for the human subjects in the standard and prototype
conditions, but not in the rules-plus-exception conditions.

The simulation of the prototype condition is arguably the least satisfac-
tory of the three. The errors for subjects in the standard and prototype
conditions were closely similar (r = .92), suggesting that some subjects in
the prototype condition may have ignored the instructions and followed a
strategy much like that used by subjects in the standard condition. The
correlation between the standard EPAM condition and the prototype sub-
ject condition is .81, higher than the correlation between the EPAM and
subject prototype conditions (.78).

To obtain a closer fit of EPAM to the human data in the standard and
prototype conditions would require EPAM to respond less promptly to the
need to add new branches to the net. A change in strategy in this direction
would probably also increase the relative difficulty of the harder over the
easier faces. However, we have preferred to show the quite good results
obtained with a strategy that was not specially ‘‘tuned” to the data. .

V/f‘
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1. TRANSFER TAsK

After completing their initial learning of the classification of the nine faces,
subjects were given a transfer task, in which they were asked to categorize
the same faces again, intermingled with examples of seven new faces. The
results of the transfer experiment are shown in Table III.

Again, there is a close relation between the subjects’ data and the EPAM
simulations on the transfer test, the relation being somewhat closer for the
old than for the new faces. EPAM tends to move closer to chance (50%)
on the new faces, which is consistent with the fact that it sometimes guessed

TABLE III

OBSERVED AND PREDICTED PROPORTIONS OF CORRECT CATEGORIZATIONS FOR
EAcH FACE DURING TRANSFER

Instruction

Rules and
Standard Exceptions Prototype

Face number People EPAM People EPAM People EPAM

Old faces
4A 97 .83 .89 87 77 75
7A 97 .96 94 98 97 .85¢
15A 92 96 94 94 88 .90
13A 81 .78 72 .64 .70 .68
5A 72 .76 .78 77 .60 .68
12B .67 7 .73 .80 45 570
2B 72 .68 .70 .67 72 .57°
14B 97 .89 91 94 .83 75
10B 95 96 95 96 87 .89
M .86 84 84 .84 77 .74
M abs. diff. .05 .03 .08
New faces
1A 72 .54 45 .26° 73 .567
6A 98 93 .88 .74° 87 .88
9A 27 524 .08 337 28 507
11A 39 .58¢ 75 .88 .52 .61
3B 44 .63 .80 914 35 554
8B 77 55 42 .28 .78 .53
16B 91 .83 .88 .66 .88 .74°
M abs. diff. 17 17 15

Note. In EPAM, the current hypothesis is lost from short-term memory before the transfer test. Thus.
both the items that were correctly identified via the hypothesis and those correctly identified via guesses
often produce errors on the transfer test.

* Difference between subjects and model exceeds .10.
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the categories correctly in the learning experiment without extending the
differentiation net to classify them unambiguously. Nevertheless, the corre-
lation over all conditions combined between errors made by EPAM and
errors made by subjects for all the different faces was .82, but .88 for the
faces seen previously and .73 for the seven new faces.

Medin and Smith used regression models (a “context” or multiplicative
model, and an “independent cue” or additive model) to fit the data from
the transfer experiment, obtaining average absolute deviations about a
third as large as EPAM’s in the first case, and about half as large in the
second. However, each of these models had 4 free parameters that were used
in fitting the data, and were estimated separately for the three experimental
conditions—a total of 12 parameters. Hence, it is hard to conclude that
the regression models did a better job than EPAM of fitting the facts.
Medin and Smith remark that the results were very sensitive to the exact
values of the parameters, which suggests that the parameters were doing
much of the work. This kind of flexibility was not available to EPAM, for
the same interpretations of the instructions were used to model both the
learning and transfer experiments.

J. SpeeDED CLASSIFICATION

Finally, after the subjects had completed the transfer task, they were asked
to perform the classification task again with the original nine faces, but
respond as rapidly as they could. In Table IV, we show the average reaction
times of the subjects in responding to each face for each set of instructions,
and compare these with EPAM’s reaction times, without modifying any of
EPAM'’s time parameters from their usual values.

In the three conditions, the subjects took, on average, 31, 28, and 24%
longer than the EPAM simulation. Hence, the times predicted with parame-
ters obtained from earlier studies of rote verbal learning provided a reason-
able fit to the data. There is a high rank-order correlation between the
times, averaged over subjects, taken to respond to the different faces and
the numbers of errors they had made while learning the faces. In the
three experimental conditions, there are rank-order correlations between
EPAM'’s times on individual faces and the subjects’ times of .71, .50, and
.13, respectively. Thus, the speeded-classification task shows much the same
pattern of findings as the two previous tasks.

K. DiscussioN

In this chapter we have described how EPAM, a program originally con-
structed to predict the behavior of human subjects in verbal learning experi-
ments, can be used to predict behavior in categorization experiments, with-
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TABLE IV

MEAN REAcTION TIMES FOR CORRECT RESPONSES FOR EACH OLD FACE
DURING SPEEDED CLASSIFICATION As A FUNCTION OF INSTRUCTIONS?

Instruction

Rules and
Standard Exceptions Prototype

Face number People EPAM People EPAM People EPAM

4 11 .96 1.27 123 1.92 1.65
5 1.34 1.02 1.61 133 213 1.68
7 1.08 .70 1.21 .93 1.69 1.39
13 1.27 1.03 1.87° 1.44° 212 1.64
15 1.07 .64 1.31 95 154 1.22
2 1.30 114 1.97% 1.53% 191 1.78
10 1.08 .65 1.42 .96 1.64 1.25
12 113 1.10 1.58 1.30 2.29 175
14 119 77 1.34 95 1.85 144
M 1.17 .89 1.51 1.18 1.90 153

Note. Reaction times are calculated using 250 ms/test node traversed plus 250 ms/net utilized. plus
250 ms if the system guesses the category.

¢ Mean reaction times in seconds.

® Face was an exception in the rules-plus-exceptions condition.

out the need to modify substantially the basic learning and performance
mechanisms of the system or the time parameters that predict rate of
learning and speed of response. To illustrate how EPAM accomplished
this, we took as an example a task that had been studied by Medin and
Smith under three different conditions that corresponded to three different
sets of task instructions.

This task is of special interest because it requires subjects to use a different
strategy for each of the experimental conditions. Hence, the data of the
subjects’ performance reflect not only their own learning and response
capabilities, but also differences of difficulty in categorizing the individual
stimuli (characteristics of the task domain) and differences in the strategies
they adopt. Although the importance for task difficulty of the task domain,
the subjects’ representation of the task domain (the problem space), and
the strategies employed by subjects has been known for a long time (see,
e.g., Newell & Simon, 1972, especially Chapter 14), there are still relatively
few published experiments in which these variables have been manipulated,
or in which the subjects’ behavior on these dimensions have been recorded
and reported.
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The complex, and sometimes apparently conflicting, results that appear
in the literature on concept attainment and categorization underscore the
importance of understanding in as much detail as possible the processes
that subjects use to formulate and attack the problems presented to them,
and the differences in performance that can be produced by different
choices of problem space and strategy. But in addition, as this particular
set of experiments shows, the detailed structure of the task domain can
itself show through into the behavior of subjects: here, largely determining
the relative difficulties of the different stimulus items in a way that is
predictable from the structure of the stimuli. R

In our reexamination of the Medin and Smith data, we have also ad-
dressed the issues that must be faced in applying models like EPAM that,
while they simulate processes in some detail, have considerable generality .
enabling them to model behavior over a wide range of laboratory tasks.
Before any model possessing substantial generality can be employed in a
particular task, a component must be added to the model to represent |
the task definition—its goals and constraints——and another component to |
represent the subjects’ strategies. {

In traditional mathematical modeling, these adaptations are achieved by 5
manipulating parameters that are built into the model structure. In modeling |
symbolic processes, they are achieved by constructing and inserting subrou- !
tines corresponding to these components of the task. Of course, the degrees
of freedom available for shaping the components cause a loss of parsimony x;
in the theory. In the long run, the added components should not be built
on an ad hoc basis for each task, but should emerge from the workings of
learning processes that constitute a permanent part of the model itself. In
the absence of such learning processes, effort must be taken to obtain |
direct evidence from the behavior of the human subjects of the problem .

representations and strategies they are actually using to perform the task. !
—t
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