

CHREST Tutorial

Learning Mechanisms

Overview

● How is CHREST's long-term memory, the
discrimination network, constructed?
– What is a discrimination network?

– Recognition processes

– Learning through familiarisation and discrimination

– Time parameters for all processes

– Lateral links: linking nodes in the network

– Templates

Long-Term Memory (LTM)

In CHREST:
● LTM is a pool of symbolic information

– consists of production rules, templates, chunks, associations
between chunks, etc

● LTM has an index to efficiently retrieve information from
the pool

● the index is assumed to be a discrimination network
● the index is constructed by exposing the model to many

examples from the domain
● an index of 300,000 nodes is typical for an expert

It is the discrimination-network index that gives CHREST
model their distinctive nature

Efficient Indexing

● The human recognition system is very efficient: an
object will be recognised as familiar and usually
identified in a fraction of a second

● e.g. we 'instantly' recognise a familiar face

● Efficient indexing algorithms needed in other domains,
e.g. dictionary algorithms

● The trie data structure (Fredkin, 1962) is an almost
identical structure to that used inEPAM/CHREST, and
today is found in yourmobile phones, for text prediction
as you type

Symbolic Modelling

● Patterns are represented in the same style for
objects outside the model and for objects inside the
model

● Patterns are symbolic, as they are meaningful

● Patterns that are familiar to the model (that is, are
stored within the LTM) are known as chunks

● Because patterns are symbolic, CHREST is an
example of a symbolic cognitive architecture

Patterns

● All patterns are assumed to be composite objects, e.g.

– a word is made up from a list of letters
– a sentence is made up from a list of words
– a chess position is made up from pieces on squares

● We represent the patterns as lists:

– < w o r d >
– < this is a sentence >
– < <t h i s> <i s> <a> <s e n t e n c e> >
– < [K e 1] [R f 1] [P f 2] [P g 2] [P h 2] >

End Markers for Patterns

● Sometimes we need to say ”This pattern consists of
the items 'a' and 'b' and nothing else”

● To say 'and nothing else', we add an end marker to
the pattern

● The end marker is some symbol that cannot
otherwise appear in the pattern (denoted '$')

● e.g.

– <a b $>

– <this is a sentence $>

Operations on Patterns

● In our learning algorithm, we will need to
manipulate patterns:
– test two patterns to see if they match or are equal

– remove one pattern from a second

● Examples of matching:
– <a b c> matches <a b c d>

– <a $> does not match <a b c>

– <a b c> does not match <a c b>

● Two patterns are equal if they contain exactly the
same items (including the end marker)

Removing Patterns

● The difference between two non-matching
patterns is the part of the second pattern after
the common part of the pattern is removed

● e.g.
– <a b c> taken from <a b d c> = < d c >

– <a b d c> taken from <a b c> = < c >

– <a b c d> taken from <a c b d $> = < c b d $>

Discrimination Network: Nodes

● A network consists of nodes connected by test links
● The test links contain a pattern which is checked against the

current input during retrieval
● The nodes contain images, which are the familiarised parts

of patterns
– images may be bigger, smaller or equal to the tests required to

reach the node

● The series of tests to reach a node forms the extrinsic
description of a chunk

● The image within the node forms the intrinsic description

Discrimination Network

Retrieval Process

Learning Process

(1) The pattern is sorted to a node

(2) The pattern is compared with the image of
the node reached

(3) If the image matches the pattern, then
familiarisation occurs

(4) If the image mismatches the pattern, or the
node is the rootnode, then discrimination
occurs

Discrimination Process

● Discrimination is how new nodes get added to the network

● We take the part of the input pattern not used so far in sorting
(the difference pattern), and attempt to sort it through the
network

1. If we stay at the root, then learn a new primitive

2. Get the image of the retrieved node:

1. If it is empty, familiarise with the difference pattern

2. Else, make a new test link:

 the test is the retrieved image (without any end marker)

 the image of the new node is the set of tests needed

 to reach it

Familiarisation Process

● Familiarisation is how new information is added to the chunks
in the network

● We take the difference between the image of the retrieved
node and the input pattern and sort it through the network

● Three things may occur:

1. We get the root node back, then we have to learn a new
primitive, using discrimination

2. If retrieved image is empty or larger than difference, we just
add first item from difference to (first) image

3. Otherwise, add the first item from retrieved image to the
first image

Learning Example (1)

● First presentation of <a b c $>

Learning Example (2)

● Second presentation of <a b c $>

Learning Example (3)

● Third presentation of <a b c $>

Learning Example (4)

● Fourth presentation of <a b c $>

Learning Example (5)

● ... Sixth presentation of <a b c $>

Learning Example (6)

● Presentation of <a b $>

Learning Example (7)

● Presentation of <d e f $> four times

Learning Example (8)

● Presentation of <d a b $>

Time Parameters

● CHREST assumes (like EPAM) that every
process we have described takes a physical
amount of time
– discrimination, 8-10 seconds

– familiarisation, 1-2 seconds

– testing a pattern, 50 milli-seconds

Discrimination 'Tree'

● So far, what we have studied are
discrimination trees

recognition starts from the top, following branches,
until reaching a leaf node

Discrimination Network

● A 'network' is a structure where nodes are interconnected
by links
– A 'tree' is a hierarchical network where each node has a unique

parent.
– More generally, nodes may be reachable from more than one

path

● Note that CHREST networks have a unique root node, and
are also directed, as recognition proceeds down the tree

● Now we look at how nodes may be linked to other nodes in
ways other than test links

Types of Lateral Link

● Similarity link: formed between two nodes which are
sufficiently 'similar'

● Sequence link: formed when the pattern in one node
typically follows that in the first

● Cross-modal link: formed when the pattern in one node
occurs at the same time as another
– Naming link: between a visual and verbal pattern

– Production link: between a pattern and action

● Generative link: formed when the preceding and
succeeding tests at two nodes overlap

Formation is triggered by the short-term memory

Short-Term Memory

● The short-term memory (STM) is a capacity-limited
storage space
– It is temporary, as later information will remove earlier

information

– It holds pointers to nodes in LTM

– The agent may use a strategy to, for example, maintain
the most informative nodes in STM

● Information from nodes in STM can be unpacked
into a 'mind's eye', and used for further learning or
driving attention

● Different STMs exist for each modality

Modality

● Modality refers to the type of pattern (from the
word mode, a particular form or variety)

● CHREST supports three types of modality:
– Visual: what is seen

– Verbal: what is heard

– Action: what is done

Similarity Links

● A similarity link is used to indicate that two nodes are
more-or-less the same, e.g.
– The lists <a b c d e> and <a b g d e>
– Or, <a b c d e> and <e d c b a>

● The learning process considers the image of the two
nodes, and compares the items within the two
– A similarity link is formed when a certain percentage of

overlap is achieved

● During retrieval, a descendant link from any of the
connected nodes can be taken

Example of a Similarity Link

Sequence Links

● A sequence link is used to indicate that two nodes
have been observed to follow each other in time, e.g.
– When learning a list of words

● The learning process
– Considers the top two nodes of any short-term memory

– Links the top node as having followed the second node

● In recognition, a sequence link may be followed to
predict which pattern(s) may come next

Cross-Modal Links

● Cross-modal links are links between two nodes of
different modality

● They are formed when two nodes co-occur on
different STMs
– Links between visual and verbal nodes are typically called

naming links

– Links between visual or verbal nodes and action nodes are
typically called production links

● During retrieval, the links may be used to name an
object, or propose an action, as appropriate

Example of a Naming Link

Example of a Production Link

Generative Links

● A generative link is used to generalise across
different lists, e.g.
– From ”The cat sat on the mat”

– And ”The dog sat on the rug”

– We could say: ”The cat sat on the rug” ...

● The learning process considers the set of nodes
before and after the given nodes, and forms a
link if 10% of the nodes are the same

● The links are used to generate output, by tracing
down through the network

Example of a Generative Link

Core and Changes

● So far, what CHREST does is capture what
stays the same
– Which chunks have I seen before also apply in this

situation?

● However, nothing is ever simply composed of
chunks of previous events

● There may be large similarities, but there will
also be small differences

Programming Expertise

For example, a programmer will not have a problem
understanding either of:

for (int i = 0, max = 100; i < max; ++i) {

// do some stuff

}

for (int q = 0, max = 100; q < max; ++q) {

// do some stuff with non-standard variable name

}

Templates

● To capture the highest level of memory, CHREST includes an
additional knowledge representation structure which captures
this idea of mostly the same but some permitted changes

● We call this a template:
– core elements are the same

– slots hold variable elements (either item or location)

– slots can be filled quickly with perceived information, without having
to learn the contents separately

What is a Template?

● Template definition:
– pieces in diagram are core

– slots could be
● square f1, could contain R or B or nothing
● Ph2 could be on h2 or h3
● square f3 could contain N or nothing

– related semantic information
● ”typical castled position”
● ”secure pawn structure”
● ”Kg1-f1” typical move in endgame

What is a Template?

● Template definition:
– pieces in diagram are core

– slots could be
● square f1, could contain R or B or nothing
● Ph2 could be on h2 or h3
● square f3 could contain N or nothing

– related semantic information
● ”typical castled position”
● ”secure pawn structure”
● ”Kg1-f1” typical move in endgame

What is a Template?

● Template definition:
– pieces in diagram are core

– slots could be
● square f1, could contain R or B or nothing
● Ph2 could be on h2 or h3
● square f3 could contain N or nothing

– related semantic information
● ”typical castled position”
● ”secure pawn structure”
● ”Kg1-f1” typical move in endgame

How to Use a Template?

● A template is stored in LTM and accessed using
the discrimination network, just like any other
chunk

● When the template is accessed in STM, then
information from the perceived scene can
quickly be loaded into the slots (~250 ms)

● This information is preserved whilst the
template is 'live' (usually, within STM)

● Hence, templates allow rapid memorisation of
the novel/variable features of a situation

How to Learn a Template?

● The idea of a template is rather like that of a generative
link: it generalises chunks across context

● The context for a template is the linked set of chunks
from a given node
– child test links

– similar nodes

● Form a template on current node (in STM) if:
– at least n pieces are in common across all linked nodes

– the current node becomes the core

– use the varying information to create slots

Summary

This section has covered the main learning
mechanisms within CHREST, including
● Creating a discrimination network
● Lateral links
● Templates

Extended descriptions can be found in the
papers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

